3,609 research outputs found

    The polytope of non-crossing graphs on a planar point set

    Full text link
    For any finite set \A of nn points in R2\R^2, we define a (3n3)(3n-3)-dimensional simple polyhedron whose face poset is isomorphic to the poset of ``non-crossing marked graphs'' with vertex set \A, where a marked graph is defined as a geometric graph together with a subset of its vertices. The poset of non-crossing graphs on \A appears as the complement of the star of a face in that polyhedron. The polyhedron has a unique maximal bounded face, of dimension 2ni+n32n_i +n -3 where nin_i is the number of points of \A in the interior of \conv(\A). The vertices of this polytope are all the pseudo-triangulations of \A, and the edges are flips of two types: the traditional diagonal flips (in pseudo-triangulations) and the removal or insertion of a single edge. As a by-product of our construction we prove that all pseudo-triangulations are infinitesimally rigid graphs.Comment: 28 pages, 16 figures. Main change from v1 and v2: Introduction has been reshape

    Flip Graphs of Degree-Bounded (Pseudo-)Triangulations

    Full text link
    We study flip graphs of triangulations whose maximum vertex degree is bounded by a constant kk. In particular, we consider triangulations of sets of nn points in convex position in the plane and prove that their flip graph is connected if and only if k>6k > 6; the diameter of the flip graph is O(n2)O(n^2). We also show that, for general point sets, flip graphs of pointed pseudo-triangulations can be disconnected for k9k \leq 9, and flip graphs of triangulations can be disconnected for any kk. Additionally, we consider a relaxed version of the original problem. We allow the violation of the degree bound kk by a small constant. Any two triangulations with maximum degree at most kk of a convex point set are connected in the flip graph by a path of length O(nlogn)O(n \log n), where every intermediate triangulation has maximum degree at most k+4k+4.Comment: 13 pages, 12 figures, acknowledgments update

    Happy endings for flip graphs

    Full text link
    We show that the triangulations of a finite point set form a flip graph that can be embedded isometrically into a hypercube, if and only if the point set has no empty convex pentagon. Point sets of this type include convex subsets of lattices, points on two lines, and several other infinite families. As a consequence, flip distance in such point sets can be computed efficiently.Comment: 26 pages, 15 figures. Revised and expanded for journal publicatio

    A History of Flips in Combinatorial Triangulations

    Get PDF
    Given two combinatorial triangulations, how many edge flips are necessary and sufficient to convert one into the other? This question has occupied researchers for over 75 years. We provide a comprehensive survey, including full proofs, of the various attempts to answer it.Comment: Added a paragraph referencing earlier work in the vertex-labelled setting that has implications for the unlabeled settin

    A Quasi-Polynomial Time Partition Oracle for Graphs with an Excluded Minor

    Full text link
    Motivated by the problem of testing planarity and related properties, we study the problem of designing efficient {\em partition oracles}. A {\em partition oracle} is a procedure that, given access to the incidence lists representation of a bounded-degree graph G=(V,E)G= (V,E) and a parameter \eps, when queried on a vertex vVv\in V, returns the part (subset of vertices) which vv belongs to in a partition of all graph vertices. The partition should be such that all parts are small, each part is connected, and if the graph has certain properties, the total number of edges between parts is at most \eps |V|. In this work we give a partition oracle for graphs with excluded minors whose query complexity is quasi-polynomial in 1/\eps, thus improving on the result of Hassidim et al. ({\em Proceedings of FOCS 2009}) who gave a partition oracle with query complexity exponential in 1/\eps. This improvement implies corresponding improvements in the complexity of testing planarity and other properties that are characterized by excluded minors as well as sublinear-time approximation algorithms that work under the promise that the graph has an excluded minor.Comment: 13 pages, 1 figur
    corecore