56,764 research outputs found

    High performance computing simulator for the performance assessment of trajectory based operations

    Get PDF
    High performance computing (HPC), both at hardware and software level, has demonstrated significant improve- ments in processing large datasets in a timely manner. However, HPC in the field of air traffic management (ATM) can be much more than only a time reducing tool. It could also be used to build an ATM simulator in which distributed scenarios where decentralized elements (airspace users) interact through a centralized manager in order to generate a trajectory-optimized conflict-free scenario. In this work, we introduce an early prototype of an ATM simulator, focusing on air traffic flow management at strategic, pre-tactical and tactical levels, which allows the calculation of safety and efficiency indicators for optimized trajectories, both at individual and network level. The software architecture of the simulator, relying on a HPC cluster of computers, has been preliminary tested with a set of flights whose trajectory vertical profiles have been optimized according to two different concepts of operations: conventional cruise operations (i.e. flying at constant altitudes and according to the flight levels scheme rules) and continuous climb cruise operations (i.e., optimizing the trajectories with no vertical constraints). The novel ATM simulator has been tested to show preliminary benchmarking results between these two concepts of operations. The simulator here presented can contribute as a testbed to evaluate the potential benefits of future Trajectory Based Operations and to understand the complex relationships among the different ATM key performance areasPeer ReviewedPostprint (published version

    Time and Energy Managed Operations (TEMO): Cessna Citation II Flight Trials

    Get PDF
    From 9-26 October 2015 the Netherlands Aerospace Centre (NLR) in cooperation with Delft University of Technology (DUT) has executed Clean Sky flight trials with the Cessna Citation II research aircraft. The trials consisted of several descents and approaches at the Eelde airport near Groningen, demonstrating the TEMO (Time and Energy Managed Operations) concept developed in the Clean Sky Joint Technology Initiative research programme as part of the Systems for Green Operations (SGO) Integrated Technology Demonstrator. A TEMO descent aims to achieve an energy-managed idle-thrust continuous descent operation (CDO) while satisfying ATC time constraints, to maintain runway throughput. An optimal descent plan is calculated with an advanced on-board real-time aircraft trajectory optimisation algorithm considering forecasted weather and aircraft performance. The optimised descent plan was executed using the speed-on-elevator mode of an experimental Fly-By-Wire (FBW) system connected to the pitch servo motor of the Cessna Citation II aircraft. Several TEMO conceptual variants have been flown. It has been demonstrated that the TEMO concept enables arrival with timing errors below 10 seconds. The project was realised with the support of CONCORDE partners Universitat Politècnica de Catalunya (UPC) and PildoLabs from Barcelona, and the Royal Netherlands Meteorological Institute (KNMI).Peer ReviewedPostprint (published version

    Flight testing Time and Energy Managed Operations (TEMO)

    Get PDF
    The expected growth in air traffic combined with an increased public concern for the environment, have forced legislators to rethink the current air traffic system design. The current air traffic system operates at its capacity limits and is expected to lead to increased delays if traffic levels grow even further. Both in the United States and Europe, research projects have been initiated to develop the future Air Transportation System (ATS) to address capacity, and environmental, safety and economic issues. To address the environmental issues during descent and approach, a novel Continuous Descent Operations (CDO) concept, named Time and Energy Managed Operations (TEMO), has been developed co-sponsored by the Clean Sky Joint Undertaking. It uses energy principles to reduce fuel burn, gaseous emissions and noise nuisance whilst maintaining runway capacity. Different from other CDO concepts, TEMO optimizes the descent by using energy management to achieve a continuous engine-idle descent, while satisfying time constraints on both the Initial Approach Fix (IAF) and the runway threshold. As such, TEMO uses timemetering at two control points to facilitate flow management and arrival spacing. TEMO is in line with SESAR step 2 capabilities, since it proposes 4D trajectory management and is aimed at providing significant environmental benefits in the arrival phase without negatively affecting throughput, even in high density and peak-hour operations. In particular, TEMO addresses SESAR operational improvement (OI) TS-103: Controlled Time of Arrival (CTA) through use of datalink [1]. TEMO has been validated starting from initial performance batch studies at Technology Readiness Level (TRL) 3, up to Human-in-the-Loop studies in realistic environments using a moving base flight simulator at TRL 5 ([2]-[6]). In this paper the definition, preparation, performance and analysis of a flight test experiment is described with the objective to demonstrate the ability of the TEMO algorithm to provide accurate and safe aircraft guidance toward the Initial Approach Fix (IAF), and further down to the Stabilization Point (1000 ft AGL), to demonstrate the ability of the TEMO algorithm to meet absolute time requirements at IAF and/or runway threshold and to evaluate the performance of the system under test (e.g. fuel usage).Peer ReviewedPostprint (published version

    Adaptive Airborne Separation to Enable UAM Autonomy in Mixed Airspace

    Get PDF
    The excitement and promise generated by Urban Air Mobility (UAM) concepts have inspired both new entrants and large aerospace companies throughout the world to invest hundreds of millions in research and development of air vehicles, both piloted and unpiloted, to fulfill these dreams. The management and separation of all these new aircraft have received much less attention, however, and even though NASAs lead is advancing some promising concepts for Unmanned Aircraft Systems (UAS) Traffic Management (UTM), most operations today are limited to line of sight with the vehicle, airspace reservation and geofencing of individual flights. Various schemes have been proposed to control this new traffic, some modeled after conventional air traffic control and some proposing fully automatic management, either from a ground-based entity or carried out on board among the vehicles themselves. Previous work has examined vehicle-based traffic management in the very low altitude airspace within a metroplex called UTM airspace in which piloted traffic is rare. A management scheme was proposed in that work that takes advantage of the homogeneous nature of the traffic operating in UTM airspace. This paper expands that concept to include a traffic management plan usable at all altitudes desired for electric Vertical Takeoff and Landing urban and short-distance, inter-city transportation. The interactions with piloted aircraft operating under both visual and instrument flight rules are analyzed, and the role of Air Traffic Control services in the postulated mixed traffic environment is covered. Separation values that adapt to each type of traffic encounter are proposed, and the relationship between required airborne surveillance range and closure speed is given. Finally, realistic scenarios are presented illustrating how this concept can reliably handle the density and traffic mix that fully implemented and successful UAM operations would entail

    Towards Autonomous Aviation Operations: What Can We Learn from Other Areas of Automation?

    Get PDF
    Rapid advances in automation has disrupted and transformed several industries in the past 25 years. Automation has evolved from regulation and control of simple systems like controlling the temperature in a room to the autonomous control of complex systems involving network of systems. The reason for automation varies from industry to industry depending on the complexity and benefits resulting from increased levels of automation. Automation may be needed to either reduce costs or deal with hazardous environment or make real-time decisions without the availability of humans. Space autonomy, Internet, robotic vehicles, intelligent systems, wireless networks and power systems provide successful examples of various levels of automation. NASA is conducting research in autonomy and developing plans to increase the levels of automation in aviation operations. This paper provides a brief review of levels of automation, previous efforts to increase levels of automation in aviation operations and current level of automation in the various tasks involved in aviation operations. It develops a methodology to assess the research and development in modeling, sensing and actuation needed to advance the level of automation and the benefits associated with higher levels of automation. Section II describes provides an overview of automation and previous attempts at automation in aviation. Section III provides the role of automation and lessons learned in Space Autonomy. Section IV describes the success of automation in Intelligent Transportation Systems. Section V provides a comparison between the development of automation in other areas and the needs of aviation. Section VI provides an approach to achieve increased automation in aviation operations based on the progress in other areas. The final paper will provide a detailed analysis of the benefits of increased automation for the Traffic Flow Management (TFM) function in aviation operations

    Satellite system performance assessment for in-flight entertainment and air traffic control

    Get PDF
    Concurrent satellite systems have been proposed for IFE (In-Flight Entertainment) communications, thus demonstrating the capability of satellites to provide multimedia access to users in aircraft cabin. At the same time, an increasing interest in the use of satellite communications for ATC (Air Traffic Control) has been motivated by the increasing load of traditional radio links mainly in the VHF band, and uses the extended capacities the satellite may provide. However, the development of a dedicated satellite system for ATS (Air Traffic Services) and AOC (Airline Operational Communications) seems to be a long-term perspective. The objective of the presented system design is to provide both passenger application traffic access (Internet, GSM) and a high-reliability channel for aeronautical applications using the same satellite links. Due to the constraints in capacity and radio bandwidth allocation, very high frequencies (above 20 GHz) are considered here. The corresponding design implications for the air interface are taken into account and access performances are derived using a dedicated simulation model. Some preliminary results are shown in this paper to demonstrate the technical feasibility of such system design with increased capacity. More details and the open issues will be studied in the future of this research work

    An Analysis of the Spatio-Temporal Factors Affecting Aircraft Conflicts Based on Simulation Modelling

    Get PDF
    The demand for air travel worldwide continues to grow at a rapid rate, especially in Europe and the United States. In Europe, the demand exceeded predictions with a real annual growth of 7.1% in the period 1985-1990, against a prediction of 2.4%. By the year 2010, the demand is expected to double from the 1990 level. Within the UK international scheduled passenger traffic is predicted to increase, on average, by 5.8 per cent per year between 1999 and 2003. The demand has not been matched by availability of capacity. In Western Europe many of the largest airports suffer from runway capacity constraints. Europe also suffers from an en-route airspace capacity constraint, which is determined by the workload of the air traffic controllers, i.e. the physical and mental work that controllers must undertake to safely conduct air traffic under their jurisdiction through en-route airspace. The annual cost to Europe due to air traffic inefficiency and congestion in en-route airspace is estimated to be 5 billion US Dollars, primarily due to delays caused by non-optimal route structures and reduced productivity of controllers due to equipment inefficiencies. Therefore, to in order to decrease the total delay, an increase in en-route capacity is of paramount importance. At a global scale and in the early 1980s, the International Civil Aviation Organisation (ICAO) recognised that the traditional air traffic control (ATC) systems would not cope with the growth in demand for capacity. Consequently new technologies and procedures have been proposed to enable ATC to cope with this demand, e.g. satellite-based system concept to meet the future civil aviation requirements for communication, navigation and surveillance/ air traffic management (CNS/ATM). In Europe, the organisation EUROCONTROL (established in 1960 to co-ordinate European ATM) proposed a variety of measures to increase the capacity of en-route airspace. A key change envisaged is the increasing delegation of responsibilities for control to flight crew, by the use of airborne separation assurance between aircraft, leading eventually to ?free flight? airspace. However, there are major concerns regarding the safety of operations in ?free flight? airspace. The safety of such airspace can be investigated by analysing the factors that affect conflict occurrence, i.e. a loss of the prescribed separation between two aircraft in airspace. This paper analyses the factors affecting conflict occurrence in current airspace and future free flight airspace by using a simulation model of air traffic controller workload, the RAMS model. The paper begins with a literature review of the factors that affect conflict occurrence. This is followed by a description of the RAMS model and of its use in this analysis. The airspace simulated is the Mediterranean Free Flight region, and the major attributes of this region and of the traffic demand patterns are outlined next. In particular a day?s air traffic is simulated in the two airspace scenarios, and rules for conflict detection and resolution are carefully defined. The following section outlines the framework for analysing the output from the simulations, using negative binomial (NB) and generalised negative binomial (GNB) regression, and discusses the estimation methods required. The next section presents the results of the regression analysis, taking into account the spatio-temporal nature of the data. The following section presents an analysis of the spatial and temporal pattern of conflicts in the two airspace scenarios across a day, highlighting possible metrics to indicate this. The paper concludes with future research directions based upon this analysis.
    corecore