106 research outputs found

    Towards Validation of an Adaptive Flight Control Simulation Using Statistical Emulation

    Get PDF
    Traditional validation of flight control systems is based primarily upon empirical testing. Empirical testing is sufficient for simple systems in which a.) the behavior is approximately linear and b.) humans are in-the-loop and responsible for off-nominal flight regimes. A different possible concept of operation is to use adaptive flight control systems with online learning neural networks (OLNNs) in combination with a human pilot for off-nominal flight behavior (such as when a plane has been damaged). Validating these systems is difficult because the controller is changing during the flight in a nonlinear way, and because the pilot and the control system have the potential to co-adapt in adverse ways traditional empirical methods are unlikely to provide any guarantees in this case. Additionally, the time it takes to find unsafe regions within the flight envelope using empirical testing means that the time between adaptive controller design iterations is large. This paper describes a new concept for validating adaptive control systems using methods based on Bayesian statistics. This validation framework allows the analyst to build nonlinear models with modal behavior, and to have an uncertainty estimate for the difference between the behaviors of the model and system under test

    A Control Allocation System for Automatic Detection and Compensation of Phase Shift Due to Actuator Rate Limiting

    Get PDF
    This paper proposes a control allocation system that can detect and compensate the phase shift between the desired and the actual total control effort due to rate limiting of the actuators. Phase shifting is an important problem in control system applications since it effectively introduces a time delay which may destabilize the closed loop dynamics. A relevant example comes from flight control where aggressive pilot commands, high gain of the flight control system or some anomaly in the system may cause actuator rate limiting and effective time delay introduction. This time delay can instigate Pilot Induced Oscillations (PIO), which is an abnormal coupling between the pilot and the aircraft resulting in unintentional and undesired oscillations. The proposed control allocation system reduces the effective time delay by first detecting the phase shift and then minimizing it using constrained optimization techniques. Flight control simulation results for an unstable aircraft with inertial cross coupling are reported, which demonstrate phase shift minimization and recovery from a PIO event

    Trajectory Planning of UAV in Wireless Powered IoT System Based on Deep Reinforcement Learning

    Get PDF
    In this paper, a UAV-assisted wireless powered communication system for IoT network is studied. Specifically, the UAV performs as base station (BS) to collect the sensory information of the IoT devices as well as to broadcast energy signals to charge them. Considering the devices' limited data storage capacity and battery life, we propose a multi-objective optimization problem that aims to minimize the average data buffer length, maximize the residual battery level of the system and avoid data overflow and running out of battery of devices. Since the services requirements of IoT devices are dynamic and uncertain and the system can not be full observed by the UAV, it is challenging for UAV to achieve trajectory planning. In this regard, a deep Q network (DQN) is applied for UAV's flight control. Simulation results indicate that the DQN-based algorithm provides an efficient UAV's flight control policy for the proposed optimization problem

    Modelling human control behaviour with a Markov-chain switched bank of control laws

    Get PDF
    A probabilistic model of human control behaviour is described. It assumes that human behaviour can be represented by switching among a number of relatively simple behaviours. The model structure is closely related to the Hidden Markov Models (HMMs) commonly used for speech recognition. An HMM with context-dependent transition functions switching between linear control laws is identified from experimental data. The applicability of the approach is demonstrated in a pitch control task for a simplified helicopter model

    The lightcraft project

    Get PDF
    Rensselaer Polytechnic Institute has been developing a transatmospheric 'Lightcraft' technology which uses beamed laser energy to propel advanced shuttle craft to orbit. In the past several years, Rensselaer students have analyzed the unique combined-cycle Lightcraft engine, designed a small unmanned Lightcraft Technology Demonstrator, and conceptualized larger manned Lightcraft - to name just a few of the interrelated design projects. The 1990-91 class carried out preliminary and detailed design efforts for a one-person 'Mercury' Lightcraft, using computer-aided design and finite-element structural modeling techniques. In addition, they began construction of a 2.6 m-diameter, full-scale engineering prototype mockup. The mockup will be equipped with three robotic legs that 'kneel' for passenger entry and exit. More importantly, the articulated tripod gear is crucial for accurately pointing at, and tracking the laser relay mirrors, a maneuver that must be performed just prior to liftoff. Also accomplished were further design improvements on a 6-inch-diameter Lightcraft model (for testing in RPI's hypersonic tunnel), and new laser propulsion experiments. The resultant experimental data will be used to calibrate Computational Fluid Dynamic (CFD) codes and analytical laser propulsion models that can simulate vehicle/engine flight conditions along a transatmospheric boost trajectory. These efforts will enable the prediction of distributed aerodynamic and thruster loads over the entire full-scale spacecraft

    Commercial users panel

    Get PDF
    The discussions of motives and requirements for telerobotics application demonstrated that, in many cases, lack of progress was a result not of limited opportunities but of inadequate mechanisms and resources for promoting opportunities. Support for this conclusion came from Telerobotics, Inc., one of the few companies devoted primarily to telerobot systems. They have produced units for such diverse applications as nuclear fusion research, particle accelerators, cryogenics, firefighting, marine biology/undersea systems and nuclear mobile robotics. Mr. Flatau offered evidence that telerobotics research is only rarely supported by the private sector and that it often presents a difficult market. Questions on the mechanisms contained within the NASA technology transfer process for promoting commercial opportunities were fielded by Ray Gilbert and Tom Walters. A few points deserve emphasis: (1) NASA/industry technology transfer occurs in both directions and NASA recognizes the opportunity to learn a great deal from industry in the fields of automation and robotics; (2) promotion of technology transfer projects takes a demand side approach, with requests to industry for specific problem identification. NASA then proposes possible solutions; and (3) comittment ofmotivated and technically qualified people on each end of a technology transfer is essential

    The Third Industrial Revolution

    Get PDF
    The author examines periods of rapid technological change for coincidences of widening inequality and slowing productivity growth. He contends that while the introduction of technologies offers profits to investors and premiums for skilled workers, in the long run the rising tide of technological change lifts everybody's boat.Technology ; Productivity ; Income distribution

    A real time Pegasus propulsion system model for VSTOL piloted simulation evaluation

    Get PDF
    A real time propulsion system modeling technique suitable for use in man-in-the-loop simulator studies was developd. This technique provides the system accuracy, stability, and transient response required for integrated aircraft and propulsion control system studies. A Pegasus-Harrier propulsion system was selected as a baseline for developing mathematical modeling and simulation techniques for VSTOL. Initially, static and dynamic propulsion system characteristics were modeled in detail to form a nonlinear aerothermodynamic digital computer simulation of a Pegasus engine. From this high fidelity simulation, a real time propulsion model was formulated by applying a piece-wise linear state variable methodology. A hydromechanical and water injection control system was also simulated. The real time dynamic model includes the detail and flexibility required for the evaluation of critical control parameters and propulsion component limits over a limited flight envelope. The model was programmed for interfacing with a Harrier aircraft simulation. Typical propulsion system simulation results are presented

    Tactile Display for EVA

    Get PDF
    As human spaceflight crews engage in more complex missions beyond low Earth orbit, their need for autonomy increases. ISS-like operations in which Earth-based mission control monitors life-critical systems and provides real time support for crew tasks will be limited by communication bandwidth and delays, forcing the crew to take on a subset of these responsibilities. This presents the biggest challenge during Extravehicular Activity (EVA)s, where the crew is already overloaded and their ability to interact with information systems is severely limited. Tactile displays, which present information using the sense of touch, expand the users' communication bandwidth. This untapped interface modality can be used for a wide range of interactions during EVA, including emergency alerts, non-emergency situational awareness, and simple instruction

    Bayesian Statistics and Uncertainty Quantification for Safety Boundary Analysis in Complex Systems

    Get PDF
    The analysis of a safety-critical system often requires detailed knowledge of safe regions and their highdimensional non-linear boundaries. We present a statistical approach to iteratively detect and characterize the boundaries, which are provided as parameterized shape candidates. Using methods from uncertainty quantification and active learning, we incrementally construct a statistical model from only few simulation runs and obtain statistically sound estimates of the shape parameters for safety boundaries
    corecore