8,039 research outputs found

    Socially-Aware Distributed Hash Tables for Decentralized Online Social Networks

    Full text link
    Many decentralized online social networks (DOSNs) have been proposed due to an increase in awareness related to privacy and scalability issues in centralized social networks. Such decentralized networks transfer processing and storage functionalities from the service providers towards the end users. DOSNs require individualistic implementation for services, (i.e., search, information dissemination, storage, and publish/subscribe). However, many of these services mostly perform social queries, where OSN users are interested in accessing information of their friends. In our work, we design a socially-aware distributed hash table (DHTs) for efficient implementation of DOSNs. In particular, we propose a gossip-based algorithm to place users in a DHT, while maximizing the social awareness among them. Through a set of experiments, we show that our approach reduces the lookup latency by almost 30% and improves the reliability of the communication by nearly 10% via trusted contacts.Comment: 10 pages, p2p 2015 conferenc

    Architectural Considerations for a Self-Configuring Routing Scheme for Spontaneous Networks

    Get PDF
    Decoupling the permanent identifier of a node from the node's topology-dependent address is a promising approach toward completely scalable self-organizing networks. A group of proposals that have adopted such an approach use the same structure to: address nodes, perform routing, and implement location service. In this way, the consistency of the routing protocol relies on the coherent sharing of the addressing space among all nodes in the network. Such proposals use a logical tree-like structure where routes in this space correspond to routes in the physical level. The advantage of tree-like spaces is that it allows for simple address assignment and management. Nevertheless, it has low route selection flexibility, which results in low routing performance and poor resilience to failures. In this paper, we propose to increase the number of paths using incomplete hypercubes. The design of more complex structures, like multi-dimensional Cartesian spaces, improves the resilience and routing performance due to the flexibility in route selection. We present a framework for using hypercubes to implement indirect routing. This framework allows to give a solution adapted to the dynamics of the network, providing a proactive and reactive routing protocols, our major contributions. We show that, contrary to traditional approaches, our proposal supports more dynamic networks and is more robust to node failures

    LookUP: Vision-Only Real-Time Precise Underground Localisation for Autonomous Mining Vehicles

    Full text link
    A key capability for autonomous underground mining vehicles is real-time accurate localisation. While significant progress has been made, currently deployed systems have several limitations ranging from dependence on costly additional infrastructure to failure of both visual and range sensor-based techniques in highly aliased or visually challenging environments. In our previous work, we presented a lightweight coarse vision-based localisation system that could map and then localise to within a few metres in an underground mining environment. However, this level of precision is insufficient for providing a cheaper, more reliable vision-based automation alternative to current range sensor-based systems. Here we present a new precision localisation system dubbed "LookUP", which learns a neural-network-based pixel sampling strategy for estimating homographies based on ceiling-facing cameras without requiring any manual labelling. This new system runs in real time on limited computation resource and is demonstrated on two different underground mine sites, achieving real time performance at ~5 frames per second and a much improved average localisation error of ~1.2 metre.Comment: 7 pages, 7 figures, accepted for IEEE ICRA 201

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle
    • …
    corecore