2,578 research outputs found

    Distributed multimedia systems

    Get PDF
    A distributed multimedia system (DMS) is an integrated communication, computing, and information system that enables the processing, management, delivery, and presentation of synchronized multimedia information with quality-of-service guarantees. Multimedia information may include discrete media data, such as text, data, and images, and continuous media data, such as video and audio. Such a system enhances human communications by exploiting both visual and aural senses and provides the ultimate flexibility in work and entertainment, allowing one to collaborate with remote participants, view movies on demand, access on-line digital libraries from the desktop, and so forth. In this paper, we present a technical survey of a DMS. We give an overview of distributed multimedia systems, examine the fundamental concept of digital media, identify the applications, and survey the important enabling technologies.published_or_final_versio

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    Temporal Isolation Among LTE/5G Network Functions by Real-time Scheduling

    Get PDF
    Radio access networks for future LTE/5G scenarios need to be designed so as to satisfy increasingly stringent requirements in terms of overall capacity, individual user performance, flexibility and power efficiency. This is triggering a major shift in the Telcom industry from statically sized, physically provisioned network appliances towards the use of virtualized network functions that can be elastically deployed within a flexible private cloud of network operators. However, a major issue in delivering strong QoS levels is the one to keep in check the temporal interferences among co-located services, as they compete in accessing shared physical resources. In this paper, this problem is tackled by proposing a solution making use of a real-time scheduler with strong temporal isolation guarantees at the OS/kernel level. This allows for the development of a mathematical model linking major parameters of the system configuration and input traffic characterization with the achieved performance and response-time probabilistic distribution. The model is verified through extensive experiments made on Linux on a synthetic benchmark tuned according to data from a real LTE packet processing scenario

    Quality of Service based Retrieval Strategy for Distributed Video on Demand on Multiple Servers

    Get PDF
    The recent advances and development of inexpensive computers and high speed networking technology have enabled the Video on Demand (VoD) application to connect to shared-computing servers, replacing the traditional computing environments where each application was having its own dedicated computing hardware. The VoD application enables the viewer to select, from a list of video files, his favorite video file and watch its reproduction at will. Early video on demand applications were based on single video server where video streams are initiated from a single server, then with the increase in the number of the clients who became interested in VoD services, the focus became on Distributed VoD architectures (DVoD) where the context of distribution may be distributed system components, distributed streaming servers, distributed media content etc.The VoD server must handle several issues in order to be able to present a successful service. It has to receive the clients’ requests and analyze them, calculate the necessary resources for each request, and decide whether a request can be admitted or not. Once the request is admitted, the server must schedule the request, retrieve the required video data and send the video data in a timely manner so that the client does not suffer data starvation in his buffer during the video reproduction. So, the overall objective of a VoD service provider is to provide a better Quality of Service (QoS). Some issues related to QoS are-efficient use of bandwidth, providing better throughput etc.One of the important issues is to retrieve the video data from the servers in minimum time and to start the playback of the video at client side with a minimum waiting time. The overall time elapsed in retrieving the video data and starting the playback is known as access time. The thesis presents an efficient retrieval strategy for a distributed VoD environment where the basic objective is to minimize the access time by maintaining the presentation continuity at the client side. We have neglected some of the network parameters which may affect the access time, by assuming a high speed network between the servers and the client. The performance of the strategy has been analyzed and is compared with the referred PAR (Play After Retrieval) strategy. Further, the strategy is also analyzed under availability condition which is a more realistic approach

    A survey of techniques and technologies for web-based real-time interactive rendering

    Get PDF
    When exploring a virtual environment, realism depends mainly on two factors: realistic images and real-time feedback (motions, behaviour etc.). In this context, photo realism and physical validity of computer generated images required by emerging applications, such as advanced e-commerce, still impose major challenges in the area of rendering research whereas the complexity of lighting phenomena further requires powerful and predictable computing if time constraints must be attained. In this technical report we address the state-of-the-art on rendering, trying to put the focus on approaches, techniques and technologies that might enable real-time interactive web-based clientserver rendering systems. The focus is on the end-systems and not the networking technologies used to interconnect client(s) and server(s).Siemens; Bertelsmann mediaSystems GmbH; Eptron Multimedia; Instituto Politécnico do Porto - ISEP-IPP; Institute Laboratory for Mixed Realities at the Academy of Media Arts Cologne, LMR; Mälardalen Real-Time Research Centre (MRTC) at Mälardalen University in Västerås; Q-Systems

    Building Internet caching systems for streaming media delivery

    Get PDF
    The proxy has been widely and successfully used to cache the static Web objects fetched by a client so that the subsequent clients requesting the same Web objects can be served directly from the proxy instead of other sources faraway, thus reducing the server\u27s load, the network traffic and the client response time. However, with the dramatic increase of streaming media objects emerging on the Internet, the existing proxy cannot efficiently deliver them due to their large sizes and client real time requirements.;In this dissertation, we design, implement, and evaluate cost-effective and high performance proxy-based Internet caching systems for streaming media delivery. Addressing the conflicting performance objectives for streaming media delivery, we first propose an efficient segment-based streaming media proxy system model. This model has guided us to design a practical streaming proxy, called Hyper-Proxy, aiming at delivering the streaming media data to clients with minimum playback jitter and a small startup latency, while achieving high caching performance. Second, we have implemented Hyper-Proxy by leveraging the existing Internet infrastructure. Hyper-Proxy enables the streaming service on the common Web servers. The evaluation of Hyper-Proxy on the global Internet environment and the local network environment shows it can provide satisfying streaming performance to clients while maintaining a good cache performance. Finally, to further improve the streaming delivery efficiency, we propose a group of the Shared Running Buffers (SRB) based proxy caching techniques to effectively utilize proxy\u27s memory. SRB algorithms can significantly reduce the media server/proxy\u27s load and network traffic and relieve the bottlenecks of the disk bandwidth and the network bandwidth.;The contributions of this dissertation are threefold: (1) we have studied several critical performance trade-offs and provided insights into Internet media content caching and delivery. Our understanding further leads us to establish an effective streaming system optimization model; (2) we have designed and evaluated several efficient algorithms to support Internet streaming content delivery, including segment caching, segment prefetching, and memory locality exploitation for streaming; (3) having addressed several system challenges, we have successfully implemented a real streaming proxy system and deployed it in a large industrial enterprise
    corecore