51 research outputs found

    Enabling Technologies for Optical Data Center Networks: Spatial Division Multiplexing

    Get PDF
    With the continuously growing popularity of cloud services, the traffic volume inside the\ua0data\ua0centers is dramatically increasing. As a result, a scalable and efficient infrastructure\ua0for\ua0data\ua0center\ua0networks\ua0(DCNs) is required. The current\ua0optical\ua0DCNs using either individual fibers or fiber ribbons are costly, bulky, hard to manage, and not scalable.\ua0Spatial\ua0division\ua0multiplexing\ua0(SDM) based on multicore or multimode (few-mode) fibers is recognized as a promising technology to increase the\ua0spatial\ua0efficiency\ua0for\ua0optical\ua0DCNs, which opens a new way towards high capacity and scalability. This tutorial provides an overview of the components, transmission options, and interconnect architectures\ua0for\ua0SDM-based DCNs, as well as potential technical challenges and future directions. It also covers the co-existence of SDM and other\ua0multiplexing\ua0techniques, such as wavelength-division\ua0multiplexing\ua0and flexible spectrum\ua0multiplexing, in\ua0optical\ua0DCNs

    Future Energy Efficient Data Centers With Disaggregated Servers

    Get PDF
    The popularity of the Internet and the demand for 24/7 services uptime is driving system performance and reliability requirements to levels that today's data centers can no longer support. This paper examines the traditional monolithic conventional server (CS) design and compares it to a new design paradigm: the disaggregated server (DS) data center design. The DS design arranges data centers resources in physical pools, such as processing, memory, and IO module pools, rather than packing each subset of such resources into a single server box. In this paper, we study energy efficient resource provisioning and virtual machine (VM) allocation in DS-based data centers compared to CS-based data centers. First, we present our new design for the photonic DS-based data center architecture, supplemented with a complete description of the architectural components. Second, we develop a mixed integer linear programming (MILP) model to optimize VM allocation for the DS-based data center, including the data center communication fabric power consumption. Our results indicate that, in DS data centers, the optimum allocation of pooled resources and their communication power yields up to 42% average savings in total power consumption when compared with the CS approach. Due to the MILP high computational complexity, we developed an energy efficient resource provisioning heuristic for DS with communication fabric (EERP-DSCF), based on the MILP model insights, with comparable power efficiency to the MILP model. With EERP-DSCF, we can extend the number of served VMs, where the MILP model scalability for a large number of VMs is challenging. Furthermore, we assess the energy efficiency of the DS design under stringent conditions by increasing the CPU to memory traffic and by including high noncommunication power consumption to determine the conditions at which the DS and CS designs become comparable in power consumption. Finally, we present a complete analysis of the communication patterns in our new DS design and some recommendations for design and implementation challenges

    Optical Networks and Interconnects

    Full text link
    The rapid evolution of communication technologies such as 5G and beyond, rely on optical networks to support the challenging and ambitious requirements that include both capacity and reliability. This chapter begins by giving an overview of the evolution of optical access networks, focusing on Passive Optical Networks (PONs). The development of the different PON standards and requirements aiming at longer reach, higher client count and delivered bandwidth are presented. PON virtualization is also introduced as the flexibility enabler. Triggered by the increase of bandwidth supported by access and aggregation network segments, core networks have also evolved, as presented in the second part of the chapter. Scaling the physical infrastructure requires high investment and hence, operators are considering alternatives to optimize the use of the existing capacity. This chapter introduces different planning problems such as Routing and Spectrum Assignment problems, placement problems for regenerators and wavelength converters, and how to offer resilience to different failures. An overview of control and management is also provided. Moreover, motivated by the increasing importance of data storage and data processing, this chapter also addresses different aspects of optical data center interconnects. Data centers have become critical infrastructure to operate any service. They are also forced to take advantage of optical technology in order to keep up with the growing capacity demand and power consumption. This chapter gives an overview of different optical data center network architectures as well as some expected directions to improve the resource utilization and increase the network capacity

    MCF-SMF Hybrid Low-Latency Circuit-Switched Optical Network for Disaggregated Data Centers

    Get PDF
    This paper proposes and experimentally evaluates a fully developed novel architecture with purpose built low latency communication protocols for next generation disaggregated data centers (DDCs). In order to accommodate for capacity and latency needs of disaggregated IT elements (i.e. CPU, memory), this architecture makes use of a low latency and high capacity circuit switched optical network for interconnecting various endpoints, that are equipped with multi-channel Silicon photonic based integrated transceivers. In a move to further decrease the perceived latency between various disaggregated IT elements, this paper proposes a) a novel network topology, which cuts down the latency over the optical network by 34% while enhancing system scalability and b) channel bonding over multicore fiber (MCF) switched links to reduce head to tail latency and in turn increase sustained memory bandwidth for disaggregated remote memory. Furthermore, to reduce power consumption and enhance space efficiency, the integration of novel multi core fiber (MCF) based transceivers, fibers and optical switches are proposed and experimentally validated at the physical layer for this topology. It is shown that the integration of MCF based subsystems in this topology can bring about an improvement in energy efficiency of the optical switching layer which is above 60%. Finally, the performance of this proposed architecture and topology is evaluated experimentally at the application layer where the perceived memory throughput for accessing remote and local resources is measured and compared using electrical circuit and packet switching. The results also highlight a multi fold increase in application perceived memory throughput over the proposed DDC topology by utilization and bonding of multiple optical channels to interconnect disaggregated IT elements that can be carried over MCF links

    MONet: Heterogeneous Memory over Optical Network for Large-Scale Data Centre Resource Disaggregation

    Get PDF
    Memory over Optical Network (MONet) system is a disaggregated data center architecture where serial (HMC) / parallel (DDR4) memory resources can be accessed over optically switched interconnects within and between racks. An FPGA/ASIC-based custom hardware IP (ReMAT) supports heterogeneous memory pools, accommodates optical-to-electrical conversion for remote access, performs the required serial/parallel conversion and hosts the necessary local memory controller. Optically interconnected HMC-based (serial I/O type) memory card is accessed by a memory controller embedded in the compute card, simplifying the hardware near the memory modules. This substantially reduces overheads on latency, cost, power consumption and space. We characterize CPU-memory performance, by experimentally demonstrating the impact of distance, number of switching hops, transceivers, channel bonding and bit-rate per transceiver on bit-error rate, power consumption, additional latency, sustained remote memory bandwidth/throughput (using industry standard benchmark STREAMS) and cloud workload performance (such as operations per second, average added latency and retired instructions per second on memcached with YCSB cloud workloads). MONet pushes the CPU-memory operational limit from a few centimetres to 10s of metres, yet applications can experience as low as 10% performance penalty (at 36m) compared to a direct-attached equivalent. Using the proposed parallel topology, a system can support up to 100,000 disaggregated cards

    Optical Technologies and Control Methods for Scalable Data Centre Networks

    Get PDF
    Attributing to the increasing adoption of cloud services, video services and associated machine learning applications, the traffic demand inside data centers is increasing exponentially, which necessitates an innovated networking infrastructure with high scalability and cost-efficiency. As a promising candidate to provide high capacity, low latency, cost-effective and scalable interconnections, optical technologies have been introduced to data center networks (DCNs) for approximately a decade. To further improve the DCN performance to meet the increasing traffic demand by using photonic technologies, two current trends are a)increasing the bandwidth density of the transmission links and b) maximizing IT and network resources utilization through disaggregated topologies and architectures. Therefore, this PhD thesis focuses on introducing and applying advanced and efficient technologies in these two fields to DCNs to improve their performance. On the one hand, at the link level, since the traditional single-mode fiber (SMF) solutions based on wavelength division multiplexing (WDM) over C+L band may fall short in satisfying the capacity, front panel density, power consumption, and cost requirements of high-performance DCNs, a space division multiplexing (SDM) based DCN using homogeneous multi-core fibers (MCFs) is proposed.With the exploited bi-directional model and proposed spectrum allocation algorithms, the proposed DCN shows great benefits over the SMF solution in terms of network capacity and spatial efficiency. In the meanwhile, it is found that the inter-core crosstalk (IC-XT) between the adjacent cores inside the MCF is dynamic rather than static, therefore, the behaviour of the IC-XT is experimentally investigated under different transmission conditions. On the other hand, an optically disaggregated DCN is developed and to ensure the performance of it, different architectures, topologies, resource routing and allocation algorithms are proposed and compared. Compared to the traditional server-based DCN, the resource utilization, scalability and the cost-efficiency are significantly improved
    • …
    corecore