6 research outputs found

    Time-Dependent Pricing for Bandwidth Slicing under Information Asymmetry and Price Discrimination

    Get PDF
    Due to the bursty nature of Internet traffic, network service providers (NSPs) are forced to expand their network capacity in order to meet the ever-increasing peak-time traffic demand, which is however costly and inefficient. How to shift the traffic demand from peak time to off-peak time is a challenging task for NSPs. In this paper, we study the implementation of time-dependent pricing (TDP) for bandwidth slicing in software-defined cellular networks under information asymmetry and price discrimination. Congestion prices indicating real-time congestion levels of different links are used as a signal to motivate delay-tolerant users to defer their traffic demands. We formulate the joint pricing and bandwidth demand optimization problem as a two-stage Stackelberg leader-follower game. Then, we investigate how to derive the optimal solutions under the scenarios of both complete and incomplete information. We also extend the results from the simplified case of a single congested link to the more complicated case of multiple congested links, where price discrimination is employed to dynamically adjust the price of each congested link in accordance with its real-time congestion level. Simulation results demonstrate that the proposed pricing scheme achieves superior performance in increasing the NSP's revenue and reducing the peak-to-average traffic ratio (PATR).This work was supported in part by the National Natural Science Foundation of China under Grant Number 61971189, the Science and Technology Project of State Grid Corporation of China under Grant Number SGSDDK00KJJS1900405, the Exploration Project of State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University) under Grant Number LAPS2019-12, the Fundamental Research Funds for the Central Universities under Grant Number 2020MS001, and the National Key R&D Program of China under Grant Number 2019YFB1704702. This article was presented in part at the International Wireless Communications and Mobile Computing Conference (IWCMC’18), Limassol, Cyprus, 2018. The associate editor coordinating the review of this article and approving it for publication was T. He. (Corresponding author: Bo Gu.) Zhenyu Zhou is with the State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources, School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 10220

    Flexible Resource Allocation in Device-to-Device Communications Using Stackelberg Game Theory

    No full text

    Survey on the state-of-the-art in device-to-device communication: A resource allocation perspective

    Get PDF
    Device to Device (D2D) communication takes advantage of the proximity between the communicating devices in order to achieve efficient resource utilization, improved throughput and energy efficiency, simultaneous serviceability and reduced latency. One of the main characteristics of D2D communication is reuse of the frequency resource in order to improve spectral efficiency of the system. Nevertheless, frequency reuse introduces significantly high interference levels thus necessitating efficient resource allocation algorithms that can enable simultaneous communication sessions through effective channel and/or power allocation. This survey paper presents a comprehensive investigation of the state-of-the-art resource allocation algorithms in D2D communication underlaying cellular networks. The surveyed algorithms are evaluated based on heterogeneous parameters which constitute the elementary features of a resource allocation algorithm in D2D paradigm. Additionally, in order to familiarize the readers with the basic design of the surveyed resource allocation algorithms, brief description of the mode of operation of each algorithm is presented. The surveyed algorithms are divided into four categories based on their technical doctrine i.e., conventional optimization based, Non-Orthogonal-MultipleAccess (NOMA) based, game theory based and machine learning based techniques. Towards the end, several open challenges are remarked as the future research directions in resource allocation for D2D communication

    Resource Management in Distributed Camera Systems

    Get PDF
    The aim of this work is to investigate different methods to solve the problem of allocating the correct amount of resources (network bandwidth and storage space) to video camera systems. Here we explore the intersection between two research areas: automatic control and game theory. Camera systems are a good example of the emergence of the Internet of Things (IoT) and its impact on our daily lives and the environment. We aim to improve today’s systems, shift from resources over-provisioning to allocate dynamically resources where they are needed the most. We optimize the storage and bandwidth allocation of camera systems to limit the impact on the environment as well as provide the best visual quality attainable with the resource limitations. This thesis is written as a collection of papers. It begins by introducing the problem with today’s camera systems, and continues with background information about resource allocation, automatic control and game theory. The third chapter de- scribes the models of the considered systems, their limitations and challenges. It then continues by providing more background on the automatic control and game theory techniques used in the proposed solutions. Finally, the proposed solutions are provided in five papers.Paper I proposes an approach to estimate the amount of data needed by surveillance cameras given camera and scenario parameters. This model is used for calculating the quasi Worst-Case Transmission Times of videos over a network. Papers II and III apply control concepts to camera network storage and bandwidth assignment. They provide simple, yet elegant solutions to the allocation of these resources in distributed camera systems. Paper IV com- bines pricing theory with control techniques to force the video quality of cam- era systems to converge to a common value based solely on the compression parameter of the provided videos. Paper V uses the VCG auction mechanism to solve the storage space allocation problem in competitive camera systems. It allows for a better system-wide visual quality than a simple split allocation given the limited system knowledge, trust and resource constraints
    corecore