526 research outputs found

    A Review of Multilevel Converters With Parallel Connectivity

    Get PDF

    Cascaded Converters For Integration And Management Of Grid Level Energy Storage Systems

    Get PDF
    ABSTRACT CASCADED CONVERTERS FOR INTEGRATION AND MANAGEMENT OF GRID-LEVEL ENERGY STORAGE SYSTEMS by ZUHAIR ALAAS December 2017 Advisor: Dr. Caisheng Wang Major: ELECTRICAL ENGINEERING Degree: Doctor of Philosophy This research work proposes two cascaded multilevel inverter structures for BESS. The gating and switching control of switching devices in both inverter typologies are done by using a phase-shifted PWM scheme. The first proposed isolated multilevel inverter is made up of three-phase six-switch inverter blocks with a reduced number of power components compared with traditional isolated CHB. The suggested isolated converter has only one battery string for three-phase system that can be used for high voltage and high power applications such as grid connected BESS and alternative energy systems. The isolated inverter enables dq frame based simple control and eliminates the issues of single-phase pulsating power, which can cause detrimental impacts on certain dc sources. Simulation studies have been carried out to compare the proposed isolated multi-level inverter with an H-bridge cascaded transformer inverter. The simulation results verified the performance of the isolated inverter. The second proposed topology is a Hierarchal Cascaded Multilevel Converter (HCMC) with phase to phase SOC balancing capability which also for high voltage and high power battery energy storage systems. The HCMC has a hybrid structure of half-bridge converters and H-bridge inverters and the voltage can be hierarchically cascaded to reach the desired value at the half-bridge and the H-bridge levels. The uniform SOC battery management is achieved by controlling the half-bridge converters that are connected to individual battery modules/cells. Simulation studies and experimental results have been carried on a large scale battery system under different operating conditions to verify the effectiveness of the proposed inverters. Moreover, this dissertation presents a new three-phase SOC equalizing circuit, called six-switch energy-level balancing circuit (SSBC), which can be used to realize uniform SOC operation for full utilization of the battery capacity in proposed HCMC or any CMI inverter while keeping balanced three-phase operation. A sinusoidal PWM modulation technique is used to control power transferring between phases. Simulation results have been carried out to verify the performance of the proposed SSBC circuit of uniform three-phase SOC balancing

    Design and Application of Hybrid Multilevel Inverter for Voltage Boost

    Get PDF
    Today many efforts are made to research and use new energy sources because the potential for an energy crisis is increasing. Multilevel converters have gained much attention in the area of energy distribution and control due to its advantages in high power applications with low harmonics. They not only achieve high power ratings, but also enable the use of renewable energy sources. The general function of the multilevel converter is to synthesize a desired high voltage from several levels of dc voltages that can be batteries, fuel cells, etc. This dissertation presents a new hybrid multilevel inverter for voltage boost. The inverter consists of a standard 3-leg inverter (one leg for each phase) and H-bridge in series with each inverter leg. It can use only a single DC power source to supply a standard 3-leg inverter along with three full H-bridges supplied by capacitors or batteries. The proposed inverter could be applied in hybrid electric vehicles (HEVs) and fuel cell based hybrid electric vehicles (FCVs). It is of voltage boosting capability and eliminates the magnetics. This feature makes it suitable for the motor running from low to high power mode. In addition to hybrid electric vehicle applications, this paper also presents an application where the hybrid multilevel inverter acts as a renewable energy utility interface. In this dissertation, the structure, operation principle, and modulation control schemes of the proposed hybrid multilevel inverter are introduced. Simulation models and results are described and analyzed. An experimental 5 kW prototype inverter is built and tested

    Distributed Control and Advanced Modulation of Cascaded Photovoltaic-Battery Converter Systems

    Get PDF

    Review of dc-dc converters for multi-terminal HVDC transmission networks

    Get PDF
    This study presents a comprehensive review of high-power dc-dc converters for high-voltage direct current (HVDC) transmission systems, with emphasis on the most promising topologies from established and emerging dc-dc converters. In addition, it highlights the key challenges of dc-dc converter scalability to HVDC applications, and narrows down the desired features for high-voltage dc-dc converters, considering both device and system perspectives. Attributes and limitations of each dc-dc converter considered in this study are explained in detail and supported by time-domain simulations. It is found that the front-to-front quasi-two-level operated modular multilevel converter, transition arm modular converter and controlled transition bridge converter offer the best solutions for high-voltage dc-dc converters that do not compromise galvanic isolation and prevention of dc fault propagation within the dc network. Apart from dc fault response, the MMC dc auto transformer and the transformerless hybrid cascaded two-level converter offer the most efficient solutions for tapping and dc voltage matching of multi-terminal HVDC networks

    The modular multilevel DC converters for MVDC and HVDC applications

    Get PDF
    A dc structure for an electrical power system is seen to have important advantages over an ac structure for the purpose of renewable energy integration and for expansion of transmission and distribution networks. There is also much interest and strong motivation to interconnect the existing point-to-point dc links to form multi-terminal and multi-voltage dc networks, which can make full use of the benefits of a dc scheme across various voltage levels and also increase the flexibility and ease the integration of both centralized and distributed renewable energy. This thesis investigates both high step-ratio dc-dc conversion to interface dc systems with different voltage levels and low step-ratio dc-dc conversion to interconnect dc systems with similar but not identical voltages (still within the same voltage level). The research work explores the possibility of combining the relatively recent modular multilevel converter (MMC) technology with the classic dc-dc circuits and from this proposes several modular multilevel dc converters, and their associated modulation methods and control schemes to operate them, which inherit the major advantages of both MMC technologies and classic dc-dc circuits. They facilitate low-cost, high-compactness, high-efficiency and high-reliability conversion for the medium voltage level and high voltage level dc network interconnection. For medium voltage level cases, this thesis extends the classic LLC dc-dc circuit by introducing MMC-like stack of sub-modules (SMs) in place of the half-bridge or full-bridge inverter in the original configuration. Two families of resonant modular multilevel dc converters (RMMCs) are proposed covering high step-ratio and low step-ratio conversion respectively. A phase-shift modulation scheme is further proposed for these RMMCs that creates an inherent feature of balancing SM capacitor voltages, provides a high effective operating frequency for reducing system footprint and offers a wide operating range for flexible conversion. For high voltage level cases requiring a high step-ratio conversion, a modular multilevel dc-ac-dc converter based on the single-active-bridge or dual-active-bridge structure is explored. The operating mode developed for this converter employs a near-square-wave ac current in order to decrease both the volt-ampere rating requirement for semiconductor devices and the energy storage requirement for SM capacitors. For low step-ratio cases, a single-stage modular multilevel dc-dc converter based on a buck-boost structure is examined, and an analysis method is created to support the choice of the circulating current frequency for minimum current stresses and reactive power losses. Theoretical analysis of and operating principles for all of these proposed modular multilevel dc converters, together with their associated modulation methods and control schemes, are verified by both time-domain simulation at full-scale and experimental tests on down-scaled prototypes. The results demonstrate that these medium voltage and high voltage dc-dc converters are good candidates for the interconnection of dc links at different voltages and thereby make a contribution to future multi-terminal and multi-voltage dc networks.Open Acces

    New trends and topologies for high power industrial applications: The multilevel converters solution

    Get PDF
    This paper reviews briefly the current scenarios where power electronics converters are being applied. In the paper, the main focus moves towards the high power applications, reviewing the different alternatives and topologies. The multilevel approach is studied in more depth, showing that is a good solution to the challenges that medium voltage-high power applications pose. Several industry examples are introduced and the most suitable modulation techniques for multilevel high power converters are explained. Among them, the recent selective harmonic mitigation method appears as a good solution to achieve a high performance. Finally the conclusions are addressed

    Recent advances in high-power industrial applications

    Get PDF
    The industrial electronics market is continuously changing following the users demand. This paper introduces the current industrial electronics applications and is focused in the medium-voltage high-power ones. The multilevel approach is the most attractive solution to achieve the challenges that medium voltage-high power applications arise. Several commercial examples are introduced and some of the last research advances related to multilevel power electronic converters are presented in this paper
    corecore