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Abstract 

 

Today many efforts are made to research and use new energy sources because the  

potential for an energy crisis is increasing. Multilevel converters have gained much attention in 

the area of energy distribution and control due to its advantages in high power applications with 

low harmonics. They not only achieve high power ratings, but also enable the use of renewable 

energy sources. The general function of the multilevel converter is to synthesize a desired high 

voltage from several levels of dc voltages that can be batteries, fuel cells, etc.  

This dissertation presents a new hybrid multilevel inverter for voltage boost. The inverter 

consists of a standard 3- leg inverter (one leg for each phase) and H-bridge in series with each 

inverter leg. It can use only a single DC power source to supply a standard 3- leg inverter along 

with three full H-bridges supplied by capacitors or batteries. The proposed inverter could be 

applied in hybrid electric vehicles (HEVs) and fuel cell based hybrid electric vehicles (FCVs).  It 

is of voltage boosting capability and eliminates the magnetics. This feature makes it suitable for 

the motor running from low to high power mode. In addition to hybrid electric vehicle 

applications, this paper also presents an application where the hybrid multilevel inverter acts as a 

renewable energy utility interface.  

In this dissertation, the structure, operation principle, and modulation control schemes of 

the proposed hybrid multilevel inverter are introduced. Simulation models and results are 

described and analyzed. An experimental 5 kW prototype inverter is built and tested.  
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1. INTRODUCTION 

 

1.1 BACKGROUND 

In recent years many efforts are made to research and use new energy sources because 

the potential for an energy crisis is increasing. Multilevel converters have gained much attention 

in the area of energy distribution and control due to theirs advantages in high power applications 

with low harmonics. They not only achieve high power ratings, but also enable the use of 

renewable energy sources. The general function of the multilevel converter is to synthesize a 

desired high voltage from several levels of dc voltages that can be batteries, fuel cells, etc. [1, 2].  

In 1975, the concept of multilevel converters was first introduced [3]. Multilevel means 

that the inverter can generate more output voltage levels than those of the common three- level 

converter. Subsequently, several multilevel converter topologies have been developed [2, 4]. The 

basic principle of a multilevel converter to achieve higher power is to use a series of power 

semiconductor switches with several lower voltage dc sources to perform the power conversion 

by synthesizing a staircase voltage waveform. Capacitors, batteries, and renewable energy 

voltage sources can be used as the multiple dc voltage sources. The commutation of the power 

switches aggregate these multiple dc sources in order to achieve high voltage at the output; 

however, the rated voltage of the power semiconductor switches depends only upon the rating of 

the dc voltage sources to which they are connected.  

Fig. 1.1 shows a multilevel inverter topology example. Each separate dc source (SDCS) 

is connected to a single-phase full-bridge, or H-bridge, inverter. Each inverter level can generate  

three different voltage outputs, +V
dc

, 0, and –V
dc 

by connecting the dc source to the ac output by 
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different combinations of the four switches, S
1
, S

2
, S

3
, and S

4
.  

To obtain +V
dc

, switches S
1 

and S
4 

are turned on, whereas –V
dc 

can be obtained by turning 

on switches S
2 

and S
3
. By turning on S

1 
and S

2 
or S

3 
and S

4
, the output voltage is 0. The number 

of output phase voltage levels m in a cascade inverter is defined by m = 2s+1, where s is the 

number of separate dc sources. The AC outputs of each of the different full-bridge inverter levels 

are connected in series such that the synthesized voltage waveform is the sum of the inverter 

outputs. The phase voltage v
an 

= v
a1 

+ …+ v
a [(m-1)/2]

. 

Multilevel converters have developed quickly based on theirs several attractive features 

as follows.  

Fig. 1.1. Single-phase topology of a multilevel cascaded H-bridges inverter.  
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     1. Industry has begun to demand higher power equipment, which reaches the megawatt level 

now. Inverter drives in the megawatt power level are usually connected to the medium-voltage 

network. Today, a single power semiconductor switch does not have the voltage blocking 

capability to connect it directly to medium voltage grids. As a result, multilevel inverter drives 

(MLIDs) have become a solution for high power drive applications.  

2. Multilevel converters can solve problems with conventional inverter drives (CIDs) 

consisting of six power switches with two-level sinusoidal pulse width modulation (SPWM).  

Motor damage and failure have been reported by industry as a result of some CIDs’ high-voltage 

change rates (dv/dt), which produce a common-mode voltage across the motor windings. High 

frequency switching can exacerbate the problem because of the numerous times this common 

mode voltage is impressed upon the motor each cycle. The main problems are reported as “motor 

bearing failure” and “motor winding insulation breakdown” because of circulating currents, 

dielectric stresses, voltage surge, and corona discharge [1].  

Multilevel converters inherently tend to have a smaller dv/dt due to the fact that switching 

involves several smaller voltages. Therefore it can reduce dv/dt to conquer the motor failure 

problem and EMI problem.  

3. Multilevel converters can generate a staircase output voltage waveform as the number of 

DC voltages increases. It can result in a better approximation to a sinusoidal waveform.  

Furthermore, the increased number of DC voltages provides the opportunity to eliminate more 

harmonic contents. Eliminating harmonic contents will make it easier to filter the remaining 

harmonic content. As a result, filters will be smaller and less expensive. 

4. Multilevel converters can operate at both fundamental switching frequency and high 

frequency switching PWM. It should be noted that lower switching frequency usually means 
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lower switching loss and higher efficiency. Also, switching at the fundamental frequency will 

result in decreasing the number of voltage changes that occur per fundamental cycle, which is 

helpful to reduce the number of dv/dt changes.  

     5. Since multilevel converters usually utilize a large number of dc voltages, several switches 

are required to block smaller voltages. Since switch stresses are reduced, required switch ratings 

are lowered. 

     6. Multilevel converters are of high system reliability. They tend to have switching 

redundancies. In other words, there might be more than one way to produce the desired voltage. 

When a component fails on a multilevel converter, most of the time the converter will still be 

usable at a reduced power level.  

Multilevel converters do have some disadvantages. One particular disadvantage is they 

require more power semiconductor switches than conventional converters. The system cost may 

increase (part of the increased cost may be offset by the fact switches with lower ratings are 

being used). Using more devices also means the probability of a device failure will increase. 

Additionally, although lower voltage rated switches can be utilized in a multilevel converter, 

each switch requires a related gate drive circuit. This causes the overall system to be more 

expensive and complex.  

Many kinds of converter topology have been proposed during the last two decades. 

Contemporary research has engaged novel converter topologies and unique modulation schemes. 

Three different major multilevel converter structures have been reported: cascad ed H-bridges 

converter with separate dc sources, diode clamped (neutral-clamped), and flying capacitors 

(capacitor clamped). In addition, many multilevel converter applications focus on industrial 
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medium-voltage motor drives [1], utility interface for renewable energy systems [5, 6], flexible 

AC transmission system (FACTS) [7], and traction drive systems [8].  

 

1.2 POWER CONVERTERS FOR TRACTION MOTOR DRIVE 

The traction motor drive is a key part of a hybrid electric vehicle (HEV) and fuel cell 

based vehicle (FCV). A HEV typically combines a smaller internal combustion engine of a 

conventional vehicle with a battery pack and an electric motor to drive the vehicle. The 

combination offers lower emissions but with the power range and convenient fueling of 

conventional (gasoline and diesel) vehicles. A FCV is one type of HEV. Both HEV and FCV 

need a traction motor and a power inverter to drive the traction motor [9]. The requirements of 

the power inverter include high peak power and low continuous power rating.  

Currently available power inverter systems for traction motor drives use a dc-dc boost 

converter to boost the battery voltage for a traditional 3-phase inverter. If the motor is running on 

low to medium power, the dc-dc boost converter is not needed, and the battery voltage will be 

directly applied to the inverter to drive the traction motor. If the motor is running in high power 

mode, the dc-dc boost converter will boost the battery voltage to a higher voltage so that the 

inverter can provide higher power to the motor. The present traction motor drive inverters have 

medium power density, are expensive, and have low efficiency because they need bulky 

inductors for the dc-dc boost converters.   

Therefore, a multilevel inverter with combined converter and inverter functions and that 

can eliminate the magnetics is an interesting research topic.  
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1.3 POWER CONVERTERS FOR RENEWABLE ENERGY UTILITY INTERFACE  

Distributed and renewable power sources (solar panels, fuel cell, wind turbines, etc.) have 

receive significant interest recently. The connection between distributed power sources and 

utility grid and/or load generally needs a power converter for processing the locally generated 

power and injecting current into the system. When the power source produces a dc voltage, the 

power converter must be able to produce a low-distortion ac current.  

Traditionally available power converter systems for renewable energy applications use a 

dc-dc boost converter, or connect a custom-built transformer to a traditional 3-phase inverter to 

boost the renewable energy source voltage. Not only the bulky inductors for the dc-dc boost 

converters lower the system efficiency, but also the transformers are the most expensive 

equipment in the system and produce about 50% of the total losses of the system [6].  

Multilevel converters can generate high voltages with low harmonics without inductors 

and transformers.  Furthermore, the structure of cascaded multilevel inverter makes it a perfect 

fit for renewable energy utility interface.  

 

1.4 ORGANIZATION OF THE DISSERTATION 

This dissertation is to develop a new hybrid multilevel inverter for voltage boost. 

Simulation models and results are described and analyzed. An experimental 5 kW prototype 

inverter has been built and tested. Experiment results based on fuel cell and renewable energy 

utility interface applications are presented.  

The dissertation is arranged as follows: 
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Chapter 2 summarizes the previous works on multilevel inverter structures and 

modulation strategies, available power converters in HEVs and FCVs, renewable energy system, 

and cascaded multilevel inverter with fewer dc power sources.  

Chapter 3 introduces the structure, operation principle, and two kinds of modulation 

control schemes of the hybrid multilevel inverter. Simulation models with PSIM and 

MATLAB/SIMULINK are provided. 

Chapter 4 presents the simulation results with fundamental frequency and PWM 

modulation methods. Experiment implementation and validation of the prototype inverter are 

illustrated. Experiment results are given and explained.  

Chapter 5 presents the experiment results and analysis based on the fuel cell system and  

solar grid applications.  

Finally, summaries and future work are discussed in chapter 6.  
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2. LITERATURE SURVEY 

 

2.1 INTRODUCTION 

In this chapter, an overview of previous research on multilevel inverter topologies and 

modulation control schemes are reviewed firstly. Secondly, some information on power 

converters used in HEV/FCV propulsion and renewable energy systems are introduced. Finally, 

cascaded multilevel inverters with fewer dc power sources are presented.  

 

2.2 MULTILEVEL INVERTER STRUCTURES  

There are three major multilevel inverter structures in industrial applications: diode-

clamped, capacitor-clamped and cascaded H-bridge inverter with separate dc sources [2, 4].  

The neutral point converter (NPC) proposed by Nabae et al. in 1981 is the simplest 

diode-clamped inverter [10]. An m- level diode-clamped inverter has an m-level output phase 

voltage and a (2m-1)-level output line voltage. The multilevel diode-clamped inverter can be 

applied as an interface between a high-voltage dc transmission line and an ac transmission line, 

as a variable speed drive for high-power medium-voltage motors, and for static var compensation 

[2, 11]. 

The structure of the capacitor-clamped inverter is similar to that of the diode-clamped 

inverter except that instead of using clamping diodes, the inverter uses capacitors in their place, 

which is introduced by Meynard et al. in 1992 [12]. The capacitor-clamped multilevel inverter 

allows more flexibility in waveform synthesis and balancing voltage across the clamped 
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capacitors. Unlike the diode-clamped inverter, the flying-capacitor inverter does not require all 

of the switches that are on (conducting) be in a consecutive series.  Moreover, the capacitor-

clamped inverter has phase redundancies, whereas the diode-clamped inverter has only line- line 

redundancies [1, 2, 13]. These redundancies allow a choice of charging/discharging specific 

capacitors and can be incorporated in the control system for balancing the voltages across the 

various levels.  

A cascaded H-bridge inverter as shown in Fig. 1.1 is several H-bridges in a series 

configuration [1, 2, 4]. Each separate dc source is connected to a single-phase H-bridge inverter. 

Besides the above three basic topologies, other plentiful multilevel topologies have been 

proposed. Most of them are some circuit modification or combination of the basic multilevel 

inverters developed for some specific application fields.  

 

2.2.1 Cascaded H-bridge Inverters 

Fig. 2.1 shows a single H-bridge. The four switches S
1
, S

2 
, S

3 
and S

4
 in a single H-bridge 

are controlled to generated three discrete output Vout with levels Vdc, 0 and –Vdc. When S
1 

and S
4 

are on, the output is Vdc, when S
2 

and S
3
are on, the output is –Vdc, when either pair S

1 
and S

2 
or S

3 

and S
4 are on, the output is 0. 

V
dc

+

-

S
1

S
2

S
4

S
3

V
out

 

 
Fig. 2.1. Single H-Bridge inverter.  
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Figure 2.2 shows an example phase voltage waveform for an 11-level cascaded H-bridge 

inverter with 5 separate dc sources and 5 full bridges.  The phase voltage van = va1 + va2 + va3 + 

va4 + va5. For a stepped waveform such as the one depicted in Fig. 2.2 with s steps, the Fourier 

Transform for this waveform follows [1, 8]: 

V t
V

n n n
n t

n

dc
s

n

( ) cos cos ... cos
sin4

1 2 ,   where n = 1, 3, 5, 7, …                  (2.1) 

From (2.1), the magnitudes of the Fourier coefficients when normalized with respect to 

Vdc are as follows: 

H n
n

n n n s

4
1 2cos cos . . . cos , where n = 1, 3, 5, 7, … (2.2) 
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Fig. 2.2.  Output phase voltage waveform of an 11- level cascade inverter  
with 5 separate dc sources. 
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1, 2, …, s are the conducting angles, which can be chosen in order to acquire a minimum 

voltage total harmonic distortion is. Generally, they are chosen so that predominant lower 

frequency harmonics, 5th, 7th, 11th, and 13th harmonics, are eliminated [14].  

Multilevel cascaded H-bridge inverters have been proposed for use as the main traction 

drive in electric vehicles, where several batteries, fuel, or ultracapacitors are well suited to serve 

as separate dc sources [8, 15]. The cascaded inverter could also serve as a rectifier/charger for 

the batteries of an electric vehicle while the vehicle was connected to an AC supply. Additionally, 

the cascade inverter can act as a rectifier in a vehicle that uses regenerative braking.  

The inverters have also been proposed for an interface with renewable energy sources, 

static var generation, and battery-based applications. The inverters are ideal for connecting 

renewable energy sources with an ac grid, because of the need for separate dc sources, which is 

the case in applications such as photovoltaics or fuel cells. Peng has demonstrated a prototype 

multilevel cascaded static var generator connected in parallel with the electrical system that 

could supply or draw reactive current from an electrical system [16-18]. The inverter could be 

controlled to either regulate the power factor of the current drawn from the source or the bus 

voltage of the electrical system where the inverter was connected. Peng [16] and Joos [19] have 

also shown that a cascade inverter can be directly connected in series with the electrical system 

for static var compensation.   

The main advantages and disadvantages of cascaded H-bridge multilevel converters are 

as follows [2, 4]. 

Advantages: 

 The number of possible output voltage levels is more than twice the number of dc sources 
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(m = 2s + 1). 

 The series of H-bridges allows for modularized layout and packaging.  This will enable 

the manufacturing process to be done more quickly and cheaply.  

 No extra clamped diodes and voltage balancing capacitors are necessary. 

Disadvantages: 

 Separate dc sources are required for each of the H-bridges.  This will limit its application 

to products that already have multiple separate dc sources readily available.  

 Need to balance dc sources among different levels.  

 Need several connectors/cables to connect dc sources.  

Another kind of cascaded multilevel converter with transformers using standard three-

phase bi- level converters has been proposed [20]. The circuit is shown in Fig. 2.3. The converter 

uses output transformers to add different voltages. In order for the converter output voltages to 

be added up, the outputs of the three converters need to be synchronized with a separation of 

120  between each phase. For example, obtaining a three- level voltage between outputs a and b, 

the output voltage can be synthesized by Vab = Va1-b1+Vb1-a2+Va2-b2. An isolated transformer is 

used to provide voltage boost. The phase between b1 and a2 is provided by a3 and b3 through the 

isolated transformer. With three converters synchronized, the voltages Va1-b1, Vb1-a2, Va2-b2, are all 

in phase; thus, the output level can be tripled [4].  

The advantage of the cascaded multilevel converters with transformers using standard 

three-phase bi- level converters is the three converters are identical and thus control is simpler. 

However, the three converters need separate DC sources and a transformer is needed to add up 

the output voltages.  
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2.2.2. Other Multilevel Inverters Based on H-bridges 
 

Many kinds of multilevel inverter structures have been derived from the above three 

basic topologies. Some of them are introduced here.     

 

A. Mixed-Level Hybrid Cascaded Multilevel Inverter 

To reduce the number of separate dc sources for high-voltage, high-power applications 

with multilevel converters, diode-clamped or capacitor-clamped converters could be used to 

replace the full-bridge cell in a cascaded inverter [21]. An example is shown in Fig. 2.4. The 

nine-level cascaded inverter incorporates a three- level diode-clamped inverter as the cell. The 

original cascaded H-bridge multilevel inverter requires four separate dc sources for one phase leg 

and twelve for a three-phase converter. If a five- level inverter replaces the full-bridge cell, the 

voltage level is effectively doubled for each cell. Thus, to achieve the same nine voltage levels  

Fig. 2.3.  Cascaded multilevel converter with transformers using standard  

three-phase bi- level converters. 
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for each phase, only two separate dc sources are needed for one phase leg and six for a three-

phase inverter. The configuration has mixed-level hybrid multilevel units because it embeds 

multilevel cells as the building block of the cascade inverter. The advantage of the topology is 

that it needs less separate dc sources. The disadvantage for the topology is that its control will be 

complicated due to its hybrid structure. 

 

B. Asymmetrical Multilevel Inverter 

Asymmetric multilevel inverters use different voltage levels among the cascaded inverter 

cells [4]. By addition and subtraction of these voltages, more unique output-voltage levels can be 

generated with the same number of components, compared to a symmetric multilevel inverter. 

Fig. 2.4. Mixed- level hybrid unit configuration using the three- level diode-clamped 
inverter as the cascaded inverter cell to increase the voltage levels.  

. 
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Higher output quality can be obtained with smaller circuit and control complexity, and even 

eliminate output filters. However, the resulting system is unstable, and, without control, the 

nonsupplied intermediate-circuit capacitor voltages will quickly run away from their nominal 

values. Veenstra and Rufer [22] have proposed a control method to stabilize a multiple of 

capacitor voltages without an equilibrium state. Power balancing is guaranteed by varying the 

common-mode voltage, using an online nonlinear model-predictive controller. Fig. 2.5 shows an 

improved three-phase asymmetrical multilevel inverter example proposed by Marithoz and Rufer 

[23]. This structure still has dc-dc converters, but depending on the configuration design, only 

from 20% to 50% of the power goes through them. The smallest part of the power goes through 

3 secondary ac/dc converters and the 6-switch large inverter directly converts the largest part of 

the power. 

U
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U
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U
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U
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U
o2

U
o3

U
i
=U

i2

 

 
Fig. 2.5. An improved three-phase asymmetrical multilevel inverter structure.  
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C. Soft-Switching Multilevel Inverter 

Several soft-switching methods can be implemented for different multilevel converters to 

reduce the switching loss and to increase efficiency. For the cascaded converter, because each 

converter cell is a two level circuit, the implementation of soft switching is not at all different 

from that of conventional bi- level converters. For capacitor-clamped or diode-clamped 

converters, soft-switching circuits have been proposed with different circuit combinations. One 

of the soft-switching circuits is a zero-voltage-switching type that includes auxiliary resonant 

commutated pole (ARCP), coupled inductor with zero-voltage transition (ZVT), and their 

combinations [4, 24]. 

 

2.3 MULTILEVEL INVERTER MODULATION CONTROL SCHEMES  

The modulation control schemes for the multilevel inverter can be divided into two 

categories, fundamental switching frequency and high switching frequency PWM [2, 4] such as 

multilevel carrier-based PWM, selective harmonic elimination and multilevel space vector PWM 

as shown in Fig. 2.6. The multilevel SPWM and selective harmonic elimination (fundamental 

switching frequency) control methods are introduced in the next section. 

 

2.3.1 Multilevel SPWM 

Multilevel SPWM needs multiple carriers. Each DC source needs its own carrier. Several 

multi-carrier techniques have been developed to reduce the distortion in multilevel converters, 

based on the classical SPWM with triangular carriers. Some methods use carrier disposition and 

others use phase shifting of multiple carrier signals [2, 25, 26].  
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The most popular SPWM method is the extension of two levels SPWM. One reference 

signal is used to compare to the carriers. This can be shown in Fig. 2.7 (a). If the reference signal 

is higher than the carrier, the corresponding inverter cell outputs positive voltage; otherwise, the 

corresponding inverter cell outputs negative voltage. The output voltage of the converter is 

shown in Fig. 2.7 (b) 

One of advantages of multilevel SPWM method is its simple implementation. Another is 

that the effective switching frequency of the load voltage is much higher than the switching 

frequency of each cell, as determined by its carrier signal.  

In m-level multilevel inverters, the amplitude modulation index, ma, and the frequency 

ratio, mf, are defined as 

                                                                 m
A

m A
a

m

c( )1
,                                                         (2.3) 

 m
f

f
f

c

m

.                                                                    (2.4) 

Where, Am is the peak-to-peak reference waveform amplitude, Ac is the peak-to-peak 

carrier waveform amplitude, fm is the reference waveform frequency, and fc is the carrier 

waveform frequency. 

Fig. 2.6. Classification of multilevel inverter modulation control schemes.  
. 

. 
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2.3.2 Selective Harmonic Elimination  

The method is also called fundamental switching frequency method based on the 

harmonic elimination theory proposed by Patel et al [27, 28]. As shown in Fig. 2.4, a multilevel 

converter can produce a quarter-wave symmetric stepped voltage waveform synthesized by 

several dc voltages [1]. Fig. 2.2 shows a typical 11- level multilevel converter output with 

fundamental frequency switching scheme. The Fourier series expansion of the output voltage 

waveform as shown in Fig. 2.2 is expressed in (2.1) and (2.2).  

The conducting angles, 1, 2, ..., s, can be chosen such that the voltage total harmonic 

distortion is a minimum. In general, the most significant low-frequency harmonics are chosen for 

elimination by properly selecting angles among different level converters, and high-frequency 

harmonic components can be readily removed by using additional filter circuits [1, 14].   

For the 11- level case, the 5th, 7th, 11th, and 13th harmonics can be eliminated with the 

appropriate choice of the conducting angles.  One degree of freedom is used so that the 

magnitude of the fundamental waveform corresponds to the reference waveform’s amplitude or 

(a) (b) 

Fig. 2.7. (a) Modulation signals and (b) output voltage with multilevel SPWM. 

. 
. 
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modulation index, ma, which is defined as VL
*/VLmax.  VL

* is the amplitude command of the 

inverter for a sine wave output phase voltage, and VLmax is the maximum attainable amplitude of 

the converter, i.e., VLmax = s Vdc, where s is the number of separate dc sources, Vdc is the dc 

voltage level. The equations from (2.2) will now be as follows: 

cos cos cos cos cos5 5 5 5 5 01 2 3 4 5  

cos cos cos cos cos7 7 7 7 7 01 2 3 4 5  

                      cos cos cos cos cos11 11 11 11 11 01 2 3 4 5                      ( 2.5) 

cos cos cos cos cos13 13 13 13 13 01 2 3 4 5  

1 2 3 4 5cos cos cos cos cos 5 am  
 

These equations are nonlinear transcendental equations that can be solved by an iterative 

method such as the Newton-Raphson method and resultant theory [29].  To keep the number of 

eliminated harmonics at a constant level, all switching angles must satisfy the condition 0 < 1 < 

2 < ... < s < /2, or the total harmonic distortion (THD) increases dramatically. Due to this 

reason, this modulation strategy basically provides a narrow range of modulation index, which is 

one of its disadvantages [4]. 

 

2.4 POWER CONVERTERS IN HEVS AND FCVS 

With increasing oil price and global warming, automobile manufacturers are producing 

more hybrid electric vehicles and electrical vehicles. Many research efforts have been focused on 

developing efficient, reliable, and low-cost power conversion techniques for the future new 

energy vehicles.  
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2.4.1 Architectures of HEVs and FCVs 

A HEV combines a conventional internal combustion engine (ICE), a battery pack or 

super capacitor, and an electric motor. A HEV uses an electric energy source (battery, super 

capacitor) to assist the propulsion of the vehicle in addition to the primary energy source (ICE, 

fuel cell). The electric motor serves as a device to optimize the efficiency of the ICE, and to 

absorb the kinetic energy during braking [30]. This concept has been in existence for more than 

100 years.  

Traditionally, ICE HEVs can be categorized into two basic types based on the structure 

of the powertrain: namely series hybrid and parallel hybrid that have been introduced by Chan 

[9].  

In series hybrid, the ICE drives a generator; the output of the generator charges a 

battery/super capacitor through a rectifier. The battery/super capacitor feeds an inverter, which 

drives the traction motor. In this configuration, all output mechanical power from the ICE is 

converted into electrical power first and then converts back into mechanical power and drives the 

vehicle through a motor/generator. In parallel hybrid, the ICE drives the wheel directly; also a 

motor/generator driven by an inverter powered by a battery is mechanically coupled with the 

ICE. The motor can assist ICE to drive the vehicle or take power back from ICE/regenerative 

braking to charge the battery when needed.  

Some other configurations are derived from the above two. For example, series–parallel 

hybrid incorporates the features of both the series and parallel HEVs, but involving an additional 

mechanical link compared with the series hybrid and also an additional generator compared with 

the parallel hybrid. Complex hybrid is another different configuration with the above three kinds. 

Its bidirectional power flow can allow for versatile operating modes, especially the three  
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propulsion power (due to the ICE and two electric motors) operating mode. Fig. 2.8 shows the 

various architectures of HEVs. 

FCV can be considered as a series-type hybrid vehicle. The onboard fuel cell produces 

electricity, which is either used to provide power to the propulsion motor or stored in the 

onboard battery for future use. 

 

2.4.2 Traction Motor in HEVs and FCVs 

The major types of electric traction motors adopted or under serious consideration for 

HEVs as well as for FCVs include the dc motor, the induction motor (IM), the permanent magnet 

(PM) synchronous motor, and the switched reluctance motor (SRM).  

Based on the following major requirements of HEVs electric propulsion, Zeraoulia et al. 

made a comparative study in [31].  

 High instant power and a high power density 

Fig. 2.8. Four architectures of HEV. 
. 
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 High torque at low speeds for starting and climbing, as well as a high power at high speed 

for cruising 

 Very wide speed range, including constant-torque and constant-power regions 

 Fast torque response 

 High efficiency over the wide speed and torque ranges 

 High efficiency for regenerative braking 

 High reliability and robustness for various vehicle operating conditions  

 Reasonable cost 

Table 2.1 shows evaluation results of the four major motors [31]. The IM seems to be the 

most adapted cand ida te fo r the e lectr ic p ropuls ion o f HEVs. However, among the 

aforementioned motor electric propulsion features, the extended speed range ability and energy 

efficiency are the two basic characteristics that are influenced by vehicle dynamics and system 

architecture. Therefore, the selection of traction drives for HEVs demands special attention to  

 

 

 

 

 

 

 

 

 

Table 2.1. Electric propulsion systems evaluation 
. 
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these two characteristics. From this analysis, a conclusion that should be drawn is that a PM 

brushless motor is an alternative. 

 

2.4.3 Power Converters in HEVs and FCVs 

There are two basic configurations for power converters in HEVs/FCVs [32]. One is a 

traditional PWM inverter powered by a battery as shown in Fig. 2.9; the other is an inverter plus 

a dc/dc converter as shown in Fig. 2.10. The dc/dc converter is usually a boost converter because 

voltage boost is needed from lower battery voltage side to output high voltage side to drive the 

traction motor for high speed and high torque [32-34].  In addition, a bidirectional power transfer 

capability is needed in the power converters. Bidirectional power flow enables the energy 

capture of regenerative brake and energy release during startup and hill climb ing. The 

regenerative brake energy is always desirable as this energy would otherwise be dissipated and 

lost as heat in the friction brakes. The inertia energy of the vehicle recovered by regenerative 

braking is originally imparted to the vehicle by the fuel conversion system [33]. So bidirectional  

Traction

Motor

 

 

Traction

Motor

 

Fig. 2.9. Traditional PWM inverter for HEVs. 
 

. 
 
 

Fig. 2.10. dc/dc boost PWM inverter for HEVs 
. 
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power transfer and conversion is of course desirable and leads to improved fuel efficiency for 

transient drive cycles.  

The battery voltage variation in HEVs could be as large as 50% and depends on the 

battery type. With this voltage range, the traditional PWM inverter has to be oversized to handle 

full voltage and twice the current at 50% of the battery voltage to output full power. Thus the 

cost of the inverter increases. The dc/dc boosted PWM inverter can minimize the stress of the 

inverter with an extra dc/dc stage; however, this increases the system cost, complexity, and 

reduces the reliability.  

Lai and Nelson [33] described some design examples of bidirectional dc-dc converters 

applied in HEV/FCV. These converters can be divided into isolated and nonisolated and widely 

use soft switching techniques. Figs. 2.11 and 2.12 show two kinds of typical bidirectional dc-dc 

converters, nonisolated buck-boost and isolated full-bridge current source. It is noted that the 

inductor in a typical bidirectional dc–dc converter is always the most bulky component, which is 

equivalent to the electric motor in an inverter-motor drive system. It is necessary to optimize the 

inductor design to minimize its size and loss.  

It can be seen that the major difficulty of designing a high-power bidirectional dc–dc  

 

 Fig. 2.11. Bidirectional buck-boost converter for high-power EV applications. 

 
 
 

. 
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converter is the limited availability of high-power switching devices and magnetic components.  

For high-power applications, a single converter requires multiple devices in parallel to 

handle high currents. Thus multiphase dc–dc converters will become the mainstream of high-

power conversions for vehicle energy management systems. Figs. 2.13 and 2.14 show 

nonisolated and isolated three-phase bidirectional dc–dc converters. However, whether isolated 

or not, multiple phases allow significant ripple reduction and thus passive component size 

reduction and ultimately cost reduction. Similar to the component availability issue, the 

controller for multiphase bidirectional dc–dc converter is also not readily available, and much 

development effort is needed. 

Peng and Shen [32][35] proposed a Z-source inverter for HEV/FCV as shown in Fig. 

2.15. The Z-source inverter is suitable because of the following unique features and advantages: 

(1) less complex, and more cost effective than a dc–dc boosted inverter, while providing the 

same function (i.e., buck boost); (2) greater reliability, because shoot-through can no longer 

destroy the inverter; (3) no need for any dc–dc converters to control the battery state of charge, 

or boost the dc bus voltage, because the Z-source inverter has two independent control freedoms.  

Fig. 2.12. Bidirectional dc–dc converter with full-bridge current source converter 
for LV side and full-bridge voltage source converter for HV side. 
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Fig. 2.13. Three-phase nonisolated bidirectional dc–dc converter. 
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Fig. 2.14. Three-phase isolated bidirectional dc–dc converter. 
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Fig. 2.15. Configuration of Z-source inverter for FCV. 
 

 
 

. 
 
 



 27 

As previously discussed, inductors are necessary in existing power inverters in 

HEVs/FCVs. Currently the common configuration is to use a dc-dc boost converter to boost the 

battery voltage for a traditional 3-phase inverter. When the motor is running on low to medium 

power, the dc-dc boost converter is not needed, and the battery voltage will be directly applied to 

the inverter to drive the traction motor. When it is running in high power mode, the dc-dc boost 

converter will boost the battery voltage to a higher voltage so that the inverter can provide higher 

power to the motor with high speed and high torque. The existence of bulky magnetics is a 

negative factor for power density, efficiency, and manufacturing cost for the present HEV/FCV 

traction drive inverters. Thus a multilevel inverter with combined rectifier and inverter functions 

and eliminated magnetics will be an attractive choice for HEV/FCV.  

 

2.5 POWER CONVERTERS US ED AS A RENEWABLE ENERGY UTILITY INTERFACE   

As discussed in section 1.3, renewable energy systems should be capable of supplying ac 

electricity. In addition, because almost all renewable energy sources are of the intermittent nature, 

most renewable energy systems should include an energy storage device that is usually 

implemented by battery banks [36]. Accordingly, it is evident that a power converter device 

capable of converting a single dc voltage from a battery bank into an ac voltage is a key element 

of renewable energy systems. The development of high performance dc/ac converters is a 

challenge, although they have expanded quickly in the last decade.  

There are two common configurations of power converters used for renewable energy 

sources. One uses a line frequency transformer after the dc/ac inverter. The line frequency 

transformer is of huge size, loud noise and high cost. Another uses a dc/dc step-up converter to 

boost the voltage. The existing inductors still bring a negative influence on the system efficiency 
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[35]-[38]. Additionally, Some new topologies based on the traditional structures have been 

developed for renewable energy applications [36]-[38]. The present challenges in designing a 

high power dc–dc step-up converter are the limited availability of high-power switching devices 

and magnetic components.  

Multilevel inverters have been proposed for renewable energy utility interface 

applications because their high power possibility and high efficiency. Multilevel converter used 

to control the frequency and voltage output from renewable energy sources will provide 

significant advantages because of their fast response and autonomous control. Additionally, 

multilevel converters can also control the real and reactive power flow from a utility connected 

renewable energy source. These power electronic topologies are attractive for continuous control 

of system dynamic behavior and to reduce power quality problems. Cascaded multilevel inverter 

can generate high-resolution multilevel waveforms with a relatively low number of components. 

In addition, dc sources can be added or subtracted, which can increase the number of output 

levels. Although the original cascaded topology requires several isolated dc sources, in some 

systems, they may be available through batteries or solar panels. Thus it has been used to 

implement high-efficiency transformerless inverters.  

Tolbert and Peng [5][6] firstly proposed an 11- level cascaded multilevel inverter for 

renewable energy utility applications. Its features include the least component count and 

modularity, which solve the major problems of the conventional inverter. A tremendous cost 

savings can be expected since the custom-designed transformers are eliminated. In [36], Daher et 

al. compared and analyzed most common topologies of multilevel converters and showed which 

ones are best suited to implement inverters for stand-alone photovoltaic applications in the range 

of a few kilowatts. A 63-level example prototype of 3 kVA was implemented, and peak 
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efficiency of 96.0% was achieved. 

 

2.6 CASCADED MULTILEVEL INVERTER WITH FEWER DC SOURCES  

As described in section 2.2.2, each H-bridge cell of a cascaded multilevel inverter needs a 

separate dc source, which will limit its application to products and fields that multiple separate 

dc sources are available. Thus, to reduce or replace these dc sources becomes interesting and 

important. A capacitor is an appropriate alternate due to its characteristic of easily charging and 

discharging. Capacitor voltage regulation is the key issue.    

The asymmetrical multilevel inverter introduced in section 2.2.3 uses different 

intermediate-circuit capacitor voltages in various parts of the inverter. By addition and 

subtraction of these voltages, more unique output-voltage levels can be generated with the same 

number of components, compared to a symmetric multilevel inverter. That means a decrease in 

the number of separate dc sources for the same level output voltage, compared to a symmetric 

multilevel inverter. The control method proposed by Veenstra and Rufer [22] is called model-

predictive control (MPC), which can deal with all of these properties and requirements. It 

predicts the system evolution as a function of the control inputs. A cost function of system and 

control quantities is defined, and the optimal control input to be applied is obtained by iteratively 

minimizing this cost function in real time. The optimizer can handle possible hard constraints.  

Corzine et al. [39] proposed a cascaded H-bridge multilevel inverter utilizing capacitor 

voltages sources as shown in Fig. 2.16. Each phase consist of p multilevel H-bridge cells. 

Typically, each cell requires a separate dc source. However, it was illustrated in [39] that the 

separate dc source is not necessary for the top inverter. In terms of the generalized model, for an 

np-level H-bridge cell, the n1 level is supplied by an isolated dc source; the remaining levels from 
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n2 to np are connected with some capacitors. The resulting inverter requires only one isolated dc 

source per phase. Capacitor voltages are controlled through redundant switching states.  

Based on the similar topology in Fig. 2.16, a phase-shift modulation method was used to 

regulate the voltage of the capacitors replacing the dc sources by Liao et al. [40]. There are two 

H-bridge cells per phase. The one named main inverter is connected with a dc source; the other 

one named auxiliary inverter is connected with a capacitor. Voltage regulation of the capacitor in 

the auxiliary converter is a challenging task. In the proposed method, capacitor voltage 

regulation is achieved by adjusting the active and reactive power that the main converter injects 

to the load. The main converter injects only active power if the conduction angle of the main 

inverter is chosen appropriately. By shifting the voltage waveform synthesized by the main 

converter, one could also inject some reactive power, which can be used to charge or discharge 

the capacitor on the auxiliary converter. Phase-shift modulation is used to find the required phase 

shift. Du et al. have a similar approach in [41].  All of these schemes require at least one dc 

power source per phase. 
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Fig. 2.16. Generalized topology of the cascaded multilevel H-bridge drive. 
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Chiasson et al. [42] proposed a three-phase hybrid cascade multilevel inverter, which 

consists of a standard 3- leg inverter (one leg for each phase) and H-bridge in series with each 

inverter leg. The single dc power source supplies the standard 3- leg inverter along with three full 

H-bridges supplied by capacitors. This means only one dc power source is needed for the three-

phase system. In [42], the SIMULINK models are built and the simulation results for a PM 

synchronous motor drive are presented.  

In this dissertation, an experimental five- level 5 kW prototype inverter based on the 

above topology is built and tested. Simulation results and analysis with SIMULINK and PSIM 

co-simulation platform are presented.  The proposed inverter for fuel cell systems and renewable 

energy utility interface applications are researched.  

 

2.7 SUMMARY 

In this chapter, the previous works on multilevel inverter structures and modulation 

strategies are presented firstly. There are three major multilevel inverter structures in industrial 

applications. Cascaded H-bridge inverter with separate dc sources and several other multilevel 

inverters based on H-bridges are introduced. Each H-bridge cell of a cascaded multilevel inverter 

needs a separate dc source, which will limit its application to products and fields that multiple 

separate dc sources are available. Thus, to reduce or replace these dc sources becomes interesting 

and important. Some cascaded multilevel inverters with fewer dc sources have been discussed.  

Secondly, this chapter has provided a survey of most existing power converters for 

traction motor drive in HEVs/FCVs and renewable energy systems. Currently available power 

inverter systems use a dc-dc boost converter to boost the battery voltage for a traditional 3-phase 

inverter. Eliminating the magnetics for the dc-dc boost converters will improve their 



 33 

performance and reduce the manufacturing cost.  

The survey suggests that a multilevel inverter that can output a boosted ac voltage and 

remove the bulky magnetic components is an interesting research topic.  
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3. HYBRID MULTILEVEL INVERTER FOR VOLTAGE BOOST 

 

As discussed in the previous chapter, the power converter is the key part of the 

HEVs/FCVs and renewable energy systems. Currently available power inverter systems use a 

dc-dc boost converter to boost the battery voltage for a traditional 3-phase inverter. Thus the 

present inverters have low power density, are expensive, and have low efficiency because they 

need bulky inductors for the dc-dc boost converters.   

The proposed hybrid multilevel inverter is a combination of standard 3-leg inverter and 

cascaded H-bridge inverter. It can output a boosted ac voltage and remove bulky and costly 

magnetic components to increase the power density. Moreover, this inverter can use only a single 

dc power source. In this chapter, its structure, operation, control and simulation models are 

presented.  

 

3.1 STRUCTURES AND OPERATION PRINCIPLE 

The hybrid multilevel inverter includes a standard 3-leg inverter (one leg for each phase) 

and H-bridge in series with each inverter leg as shown in Fig. 3.1. Fig 3.2 shows its simplified 

single-phase topology. It can use only a single dc power source to supply a standard 3- leg 

inverter along with three full H-bridges supplied by capacitors. Traditionally, each H-bridge 

requires a dc power source [42-44].  

The bottom of the inverter is one leg of a standard 3- leg inverter with a dc power source. 

The top is a H-bridge in series with each standard inverter leg. The H-bridge can use a separate 

dc power source or a capacitor as the dc power source.  
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All the parameters of this inverter are listed as follows:  

 

v1: the bottom standard inverter output voltage  

1: phase angle of the bottom standard inverter output voltage 

v2: the top H-bridge output voltage 

2: phase angle of the top H-bridge output voltage 

v: load voltage 

i: load current 

: phase angle of the top H-bridge output voltage 

vc: capacitor voltage 

Vdc: power supply output voltage 

 

The output voltage v1 of this leg (with respect to the ground) is either +Vdc/2 (S5 closed) 

or −Vdc/2 (S6 closed). This leg is connected in series with a full H-bridge that in turn is supplied 

by a capacitor voltage. If the capacitor is kept charged to Vdc/2, then the output voltage of the H-

bridge can take on the values +Vdc/2 (S1, S4 closed), 0 (S1, S2 closed or S3, S4 closed), or −Vdc/2 

(S2, S3 closed). An example output waveform that this topology can achieve is shown in Fig 3.3. 

When the output voltage v = v1 + v2 is required to be zero, one can either set v1 = +Vdc/2 and v2 = 

−Vdc/2 or v1 = −Vdc/2 and v2 = +Vdc/2. It is this flexibility in choosing how to make that output 

voltage zero that is exploited to regulate the capacitor voltage. When only a single dc power 

source is used in the three-phase inverter, that is, the H-bridge uses a capacitor as the dc source; 

the capacitor’s voltage regulation control details are illustrated in Fig. 3.4.  
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Fig. 3.1. Topology of the hybrid multilevel inverter.  
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Fig. 3.3. Five level output waveform. 

Fig. 3.2. Simplified single-phase topology of the hybrid multilevel inverter.  



 38 

 

 

 

 
 
 

 

 

 

 

 

 

During θ1 ≤ θ ≤ π, the output voltage is zero and the current i > 0. If S1, S4 are closed (so 

that v2 = +Vdc/2) along with S6 closed (so that v1 = −Vdc/2), then the capacitor is discharging (ic = 

−i < 0 see Fig. 3.4 (b)) and v = v1 + v2 = 0. On the other hand, if S2, S3 are closed (so that v2 = 

−Vdc/2) and S5 is also closed (so that v1 = +Vdc/2), then the capacitor is charging (ic = i > 0 see 

Fig. 3.4 (c)) and v = v1+v2 = 0.  When i < 0, if S1, S4 are closed (so that v2 = +Vdc/2) along with S6 

closed (so that v1 = −Vdc/2), then the capacitor is charging (ic = −i > 0) and v = v1 + v2 = 0. On the 

other hand, if S2, S3 are closed (so that v2 = −Vdc/2) and S5 is also closed (so that v1 = +Vdc/2), 

then the capacitor is discharging (ic = i < 0).  The i < 0 case is accomplished by simply reversing 

the switch positions of the i > 0 case for charge and discharge of the capacitor. Consequently, the 

method consists of monitoring the output current and the capacitor voltage so that during periods 

of zero voltage output, either the switches S1, S4, and S6 are closed or the switches S2, S3, S5 are 

closed depending on whether it is necessary to charge or discharge the capacitor.  

Fig. 3.4. Capacitor voltage regulation process. 
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As Fig. 3.4 illustrates, this method of regulating the capacitor voltage depends on the 

voltage and current not being in phase. That means one needs positive (or negative) current when 

the voltage is passing through zero in order to charge or discharge the capacitor. Consequently, 

the amount of capacitor voltage the scheme can regulate depends on the phase angle difference 

of output voltage and current. It is noted that the above capacitor voltage regulation method is 

described using a fundamental frequency modulation scheme because it is easier to illustrate [42].   

The realization of capacitor voltage regulation and inverter boost function depends on the phase 

angle difference of output voltage and current. Actually, that means they are related to the 

amount of reactive power required by the load. A single-phase analysis can be used to explain 

the issue.  

 

For the bottom inverter, the output reactive power is  

)sin(
1,11 rmsrms

ivQ                                                  (3.1) 

The top H-bridges deliver the reactive power,    

                                              )sin(
2,22 rmsrms

ivQ                                                   (3.2) 

The load reactive power demand is,  

                                                 )sin(
rmsrmsL

ivQ                                                   (3.3) 

and,     

                                                     
L

QQQ
21

                                                               (3.4) 

Combining equations (3.1) to (3.4), it can be concluded that, 

                                           )sin()sin()sin(
2,211,1 rmsrmsrms

vvv                              (3.5) 
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Assuming sin ( 1) = 0 (no reactive power is supplied by the bottom inverter), the 

maximum power is extracted from the power supply connected with the bottom inverter, which 

means it only delivers real power. This means the top H-bridges deliver all of the reactive power, 

i.e. sin ( 2) = 1. From (3.5), if the load is resistive, i.e. sin ( ) = 0, then 0
,2 rms

v . Thus the 

capacitor voltage regulation cannot be realized and a boosted voltage cannot be produced. The 

analysis shows that capacitor voltage regulation and inverter boost function depends on the phase 

angle difference of output voltage and current.  

 

3.2 MODULATION SCHEMES OF THE HYBRID MULTILEVEL INVERTER 

The modulation control schemes for the multilevel inverter can be divided into two 

categories, fundamental switching frequency and high switching frequency PWM, such as 

multilevel carrier-based PWM, selective harmonic elimination and multilevel space vector PWM. 

Both PWM and fundamental frequency switching methods can be used for the hybrid multilevel 

inverter. 

 

3.2.1 Fundamental Frequency Control Method 

The key issue of the fundamental frequency modulation control is to choose two 

switching angles 1 and 2. The goal is to output the desired fundamental frequency voltage and 

to eliminate the 5th harmonic. Mathematically, this can be formulated as the solution to the 

following equations: 

0)5cos()5cos(

)cos()cos(

21

21 am
                                      (3.6) 
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where, ma is the output voltage amplitude modulation index. Traditionally, the modulation index 

is defined as 

                                                              
2

1

dcV

V
m                                                                           (3.7)                        

Therefore, the relationship between the modulation index m and the output voltage index 

ma is 

                                                      amm
4

                                                             (3.8)                        

A practical solution set is shown in Fig. 3.5, which is continuous from modulation index 

0.75 to 2.42. However, the maximum modulation index 2.42 depends on displacement power 

factor as shown below.  The load current displacement angle is  as shown in Fig. 3.6. 

To balance the capacitor voltage, the capacitor charging amount needs to be greater than 

the discharging amount [43]. That is, to regulate the capacitor’s voltage with fundamental 

frequency switching scheme, the following equation must be satisfied,  

                                 0dθidθi ingargdischingargch                                                   (3.9) 

In detail, we have the following equations 

                                                         )sin( tIi                                                    (3.10) 

and the displacement power factor 

                                                           )cos(pf                                                               (3.11) 

The three cases are: 

0 ≤  ≤  θ1 
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                                              0
2

21

1

0
idθidθidθdθi                        (3.12) 

θ1 <  ≤  θ2 

                                                     0
2

21

1

0
idθidθdθi                              (3.13) 

θ2 <  ≤  π/2 

                                                    0
2

21

1

0
idθidθdθi                              (3.14) 

                                                        

Combining (3.10), (3.11), (3.12), (3.13) and (3.14), it can be concluded that  

for 0 ≤  ≤  θ1, 

                                                                  
m

pf
4

                                                      (3.15) 

and for θ1 <  ≤ π/2. 

                                                
)sin(

)cos(
tancos

1

21pf                                               (3.16) 

Therefore, equations (3.15) and (3.16) are the conditions for the fundamental frequency 

switching scheme to eliminate the 5th harmonic and to regulate the capacitor’s voltage.  

Furthermore, to use minimum phase displacement angles is a more convenient way to use 

equations (3.15) and (3.16). It means if the phase displacement angle is greater than the 

minimum angle, the voltage can be regulated anyway.  

Fig. 3.7 is derived from equations (3.9)-(3.16). It can be seen in Fig. 3.7 that the highest 

output voltage modulation index depends on the displacement power factor. When the 

modulation index is less than 1.27, it can be applied on the load with any power factor. When the  
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Fig. 3.5. Switching angles θ1 (lower) and θ2 (upper) vs. Modulation index. 

Fig. 3.6. Five level output waveform. 

Fig. 3.7. Displacement power factor and output voltage modulation index.  
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modulation is between 1.27 and 2.42, it can be applied on the load with a corresponding highest 

power factor. For practical applications, the highest output voltage is determined when the load 

is determined.  It is noted that the curve with the modulation index beyond 2.42 in Fig. 3.7 is not 

considered.  

 

3.2.2 Multilevel PWM Control Method 

Multilevel carrier-based PWM strategies are the most popular methods because they are 

easily implemented. Three major carrier-based techniques used in a conventional inverter that 

can be applied in a multilevel inverter: sinusoidal PWM (SPWM), third harmonic injection 

PWM (THPWM), and space vector PWM (SVM). SPWM is a very popular method in industrial 

applications. It uses several triangle carrier signals, one carrier for each level and one reference, 

or modulation, signal per phase.  

In the hybrid multilevel inverter, the top H-bridge inverter is operated under the SPWM 

with unipolar voltage switching mode and the bottom standard 3- leg inverter is operated under 

square-wave mode in order to reduce switching loss [45]. Fig. 3.8 shows the PWM modulation 

signals applied on the H-bridges. They include six sinusoidal reference waveforms and two 

triangle carrier waveforms. The comparison of reference and carrier waveforms result in twelve 

modulation signals to control the twelve switches distributed in the three H-bridges shown in Fig. 

3.1. Fig. 3.9 shows the square-wave modulation signal applied on the standard inverter. Unipolar 

switching scheme requires that the inverter needs to output –Vdc/2, 0 and Vdc/2 phase voltage. 

Traditional inverter can not use unipolar switching scheme since its one phase leg can only 

output –Vdc/2 and Vdc/2 phase voltage, and no 0 voltage. For the hybrid multilevel inverter, the 
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combination of the bottom inverter output and the top H-bridge make it possible to employ 

unipolar switching scheme control because it can generate 0 voltage.  

It is noted that the above capacitor voltage regulation method is described using a 

fundamental frequency modulation scheme in section 3.2.1 because it is easier to illustrate [42]. 

It is difficult to calculate with PWM method due to its complexity of output voltage waveform. 

Under multilevel PWM control method, the same regulation method is utilized. It means the 

highest output voltage modulation index depends on the displacement power factor. For practical 

applications, the highest output voltage is determined when the load is determined.  Fig. 3.10 

shows the simulation result on the relationship between the modulation index and the power 

factor.  The result is similar with fundamental frequency modulation scheme. When the power 

factor increases, the highest output voltage modulation index decreases. It means that the highest 

output voltage is determined when the load is determined for practical applications.   

 

3.2.3 Unipolar programmed PWM Control Method 

An alternate method to realize unipolar PWM modulation scheme is unipolar 

programmed PWM method, which is similar with fundamental frequency method.  

Fig. 3.11 shows its output voltage waveform. The key issue is to regulate the capacitor’s 

voltage to Vdc/2 in order to realize the unipolar switching scheme control. To regulate the 

capacitor’s voltage, if i > 0 and Vc < Vdc/2, the inverter controls the bottom inverter to output 

Vdc/2 and the top H-bridge to output −Vdc/2 for inverter’s 0 voltage output; if i > 0 and Vc > Vdc/2, 

the inverter controls the bottom inverter to output −Vdc/2 and the top H-bridge to output Vdc/2 for 

inverter’s 0 voltage output. Similarly, if i < 0 and Vc < Vdc/2, the inverter controls the bottom 

inverter to output -Vdc/2 and the top H-bridge to output Vdc/2 for inverter’s 0 voltage output; if i <  
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Fig. 3.8. PWM modulation signal. 
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0 and Vc > Vdc/2, the inverter controls the bottom inverter to output Vdc/2 and the top H-bridge to 

output -Vdc/2 for inverter’s 0 voltage output.  

It can be seen that the key issue of the unipolar switching control is to choose suitable 

switching angles. When the goal is to output the desired fundamental frequency voltage and to 

eliminate the low order 5th, 7th, 11th and 13th harmonics, mathematically this can be formulated as 

the solution to the following equations: 

This is a system of 5 transcendental equations in the 5 unknowns 1, 2, 3, 4, and 5. 

There are many ways one can solve for the angles.  

 

                 

0)13cos()13cos()13cos()13cos()13cos(

0)11cos()11cos()11cos()11cos()11cos(

0)7cos()7cos()7cos()7cos()7cos(
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)cos()cos()cos()cos()cos(
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        (3.12) 
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Fig. 3.11. Unipolar switching output waveform. 
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Traditionally, the maximum voltage amplitude modulation index for linear operation of a 

traditional full-bridge bi- level inverter using SPWM control method is 1 (without third harmonic 

compensation) and 1.15 (with third harmonic compensation, and the inverter output voltage 

waveform is SPWM waveform, not square waveform). With the cascaded H-bridge multilevel 

inverter, the maximum amplitude modulation index for linear operation can be as high as 1.9 

under fundamental frequency mode. This means it can output a boosted AC voltage to increase 

the output power, and the output voltage depends on the displacement power factor of the load. 

The highest voltage is determined when the load is determined. This feature makes the inverter 

suitable for HEV/FCV applications. Moreover, in consideration of the implementation of 

modulation control methods, the fundamental frequency and PWM methods can be chosen for 

high power and low power stage in practical application [46]. 

When the hybrid multilevel inverter is used for utility interface, one example is that the 

bottom is one leg of a standard 3- leg inverter with a dc power source such as solar panel, and the 

top H-bridges use batteries separately as dc power source, which is charged by the solar panel. 

The battery charging process is much slower than the capacitor. When fundamental frequency 

control method is applied to the inverter, the low switching frequency makes it difficult to charge 

the battery to a required voltage level. The PWM method is a better choice due to the need of 

battery charging for the inverter.  

 

3.3 SIMULATION MODELS WITH PSIM  AND MATLAB/SIMULINK  

The simulation models on PSIM and MATALB/SIMULINK co-simulation platform are 

developed as the following. 
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The PSIM model for the power circuit is shown in Fig. 3.12. PSIM provides a simulation 

environment for power electronics applications. It is convenient and straightforward to build and 

adjust the power circuit model in PSIM because of its numerous modules, and a control model is 

shown in Fig. 3.13. A SimCoupler module provides the interface between PSIM and 

MATLAB/SIMULINK for co-simulation. The SimCoupler interface consists of two parts: the 

link nodes in PSIM, and the SimCoupler model block in Simulink. With the SimCoupler module, 

part of a system can be implemented and simulated in PSIM, and the rest of the system in 

MATLAB/SIMULINK. In PSIM, the SLINK_IN nodes receive values from SIMULINK, and 

the SLINK_OUT nodes send the values to SIMULINK. They are all control elements and can be 

used in the control circuit.  

In SIMULINK, the SimCoupler model block is connected to the rest of the system 

through input/output ports. When running a simulation, all the input signals and feedback signals 

from the inverter are communicated with SimCoupler model. One can therefore make full use of 

PSIM’s capability in power simulation and MATLAB/SIMULINK’s capability in control 

simulation in a complementary way [45].  

 

3.4 SUMMARY 

The structure and operation principle of the proposed hybrid multilevel inverter have 

been presented in this chapter. As can be seen, the inverter includes a standard 3- leg inverter and 

H-bridge in series with each inverter leg.  It can use only a single dc power source to supply a 

standard 3- leg inverter along with three full H-bridges supplied by capacitors. The capacitor 

voltage regulation depends on the phase angle difference of output voltage and current. It can 

generate a boosted five level output voltage based on either fundamental frequency or PWM  
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Fig. 3.12.  PSIM model for the hybrid multilevel inverter. 
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control method. The two modulation schemes applied to the inverter have been described in this 

chapter.  

This chapter has provided the simulation models developed on PSIM and 

MATALB/SIMULINK co-simulation platform. The power circuit model is built in PSIM 

because of its numerous module and device sources. Its control functions are completed in 

MATLAB/SIMULINK. The simulation results and experiment validation will be presented in 

the next chapter. 
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4. SIMULATIONS AND EXPERIMENTAL VALIDATION 

 

In this chapter, the simulation results with fundamental frequency and PWM control 

methods are presented firstly. Then the prototype inverter fabrication and experiment set-up are 

introduced. Finally, the experiment results are described and analyzed.  

 

4.1 SIMULATION RESULTS UNDER FUNDAMENTAL FREQUENCY AND PWM MODULATION 

MODES 

 

4.1.1 Simulation Results 

 

A. Fundamental Frequency Control Method 

In section 2.3.2, the fundamental frequency modulation method has been introduced. 

When applying fundamental frequency modulation method, each device switches once per cycle 

in contrast to a PWM modulation method. Fig. 4.1 shows the simulation results including phase 

voltage, line- line voltage, and phase current. DC bus voltage is 40V. As discussed in section 3.1, 

capacitors voltages are regulated to Vdc/2 (20V). One can see that a five- level output phase 

voltage and a sinusoidal phase current is produced under the fundamental frequency method.  
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Fig. 4.1. Output line- line and phase voltage, phase current of  
the hybrid multilevel inverter (m=2). 
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Fig. 4.2. H-bridge (top) and standard inverter (bottom) output voltage. 

Fig. 4.3. Output line- line and phase voltage, phase current of the hybrid 

multilevel inverter (m=1.6).  
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B. Multilevel PWM Control Method 

In the hybrid multilevel inverter, the top H-bridge inverter is operated under the SPWM 

mode and the bottom standard 3-leg inverter is operated under square-wave mode in order to 

reduce switching loss. The top H-bridge and bottom standard 3- leg inverter output voltage 

waveform are shown in Fig. 4.2. Fig. 4.3 shows the simulation results, which include phase 

voltage, line- line voltage, and phase current. DC bus voltage is the same 40V for this case. 

Capacitor voltages are regulated to Vdc/2 (20V). A five- level output phase voltage is produced. 

The phase current is a sinusoidal waveform.  

 

4.1.2 Capacitor Voltage Regulation  

As discussed in section 3.1, a key issue to realize the control method is that the capacitor 

voltages (vc) need to be kept regulated to one half of the dc voltage (Vdc/2). To regulate the 

capacitor’s voltage, if i > 0 and vc < Vdc/2, the inverter controls the bottom inverter to output 

Vdc/2 and the top H-bridge to output −Vdc/2 for inverter’s 0 voltage output; if i > 0 and vc > Vdc/2, 

the inverter controls the bottom inverter to output −Vdc/2 and the top H-bridge to output Vdc/2 for 

inverter’s 0 voltage output. The i < 0 situation is similar to the i > 0 situation, the controller just 

needs to reverse its switching signals as described in section 3.1.  

From the above simulation results, one can find that the fundamental frequency and 

PWM scheme both make the inverter output zero voltage for significant time intervals so that the 

capacitor can be charged or discharged during these periods.  

Fig 4.4 shows capacitor voltage, phase voltage and phase current to illustrate how to 

realize the capacitor voltage regulation. The dc bus voltage is 40 V. The capacitor voltage needs 

to be regulated to 20 V. From Fig. 4.4, one can find that the capacitor voltage decreases  
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(discharging) during those times the inverter is putting out ±40 V, is constant during those times 

the inverter is putting out ±20 V, and is increasing (charging) during those time intervals the 

inverter is putting out 0 V.  It is necessary to make the inverter output zero voltage for significant 

time intervals so that capacitor voltage increases.  

For the fundamental frequency scheme, the highest output voltage modulation index 

depends on the displacement power factor. For practical applications, the highest output voltage 

is determined when the load is determined.  For the PWM fundamental scheme, it has the similar 

condition. When the load is fixed, after the modulation index reaches its possible maximum 

value, increasing modulation index may make the capacitor voltage regulation not work.  

Figs. 4.5 and 4.6 compare two capacitor voltage regulation examples, which show the 

capacitor voltage as a function of time. In Fig. 4.5, the capacitor voltage is regulated within 0.3 V 

of the desired voltage. However, in Fig 4.6, it is kept more than 1 V below the desired voltage.  
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Fig. 4.4. Capacitor voltage, phase voltage and phase current.  



 58 

  

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
19.4

19.5

19.6

19.7

19.8

19.9

20

20.1

Time (s)

V
 (

V
o
lt
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
15

16

17

18

19

20

Time (s)

V
 (

V
o
lt)

Fig. 4.5. Capacitor voltage (20 V) vs. time (PF=0.8, m=1.1). 
 
 

      Fig. 4.6. Capacitor voltage (less than 20 V) vs. time (PF=0.8, m=1.2).  
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When the modulation index is lower than the highest modulation index with a specific 

power factor, the capacitor can be kept regulated to one half of the dc voltage (Vdc/2). When the 

modulation index is higher than the highest modulation index with a specific power factor, the  

capacitor cannot be regulated properly.  It means that the highest output voltage is determined 

when the load is determined for practical applications.   

 

4.2 EXPERIMENTAL VALIDATION 

A 5 kW prototype using power MOSFETs (100V, 180A) as shown in Fig. 4.7 has been 

built in order to verify the proposed hybrid multilevel inverter. The load is a 15 hp three-phase 

induction motor, which is loaded less than 5 kW. An Altera FLEX 10K field programmable gate 

array (FPGA) controller is used to implement the control algorithm to drive the motor with the 

real-time variable output voltage and variable frequency [43][47].  

 

 

 

 

 

 

 

 

 

 

Fig. 4.7. 5 kW hybrid multilevel inverter prototype. 
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The FPGA controller is designed as a card to be plugged into a personal computer as 

shown in Fig. 4.8, which uses a peripheral component interconnect (PCI) bus to communicate 

with the microcomputer in which a Visual Basic interface is used to input and adjust the control 

schemes and parameters. For example, one can choose different modulation control methods or 

change modulation index easily through this interface.  

The capacitor voltage is detected by a voltage sensor and fed into the FPGA controller to 

realize the capacitor voltage regulation. The block diagram of the FPGA controller is shown in 

Fig. 4.9. Switching signal data are stored in a 12×1024 bits in-chip RAM. An oscillator generates 

a fixed frequency clock signal, and a divider is used to generate the specified control clock signal 

corresponding to the converter output frequency. Three phase address generators share a public 

switching data RAM because they have the same switching data with only a different phase 

angle. The switching data is only for one half cycle because the switching data is symmetric. For 

each step, the three-phase signal controller controls the address selector to fetch the 

corresponding switching data from the RAM to the output buffer according to the capacitor’s 

voltage. 
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Fig. 4.8. FPGA controller.  

Fig. 4.9. FPGA controller block diagram. 
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4.3 EXPERIMENTAL RESULTS 

Both fundamental frequency and PWM control methods are applied on the 5 kW 

prototype inverter.   

Experimental results with fundamental frequency method including phase voltage, line-

line voltage, and phase current are shown in Fig. 4.10. Fig. 4.11 and 4.12 show the normalized 

FFT analysis result of phase voltage and current. Total harmonic distortion (THD) is derived 

respectively. THD is defined as the ratio of the sum of the amplitudes of all harmonic 

components to the amplitudes of fundamental frequency as follows: 

 

%100
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XXXXX
THD


                             (4.1) 

            Where, X represents the voltage or current.  

 

The THD of voltage and current with fundamental frequency method is 6.54% and 1.35% 

respectively. 

The experimental results and normalized FFT analysis with PWM method are shown in 

Fig. 4.13, 4.14 and 4.15. The THD of voltage and current is 12.29% and 3.14% respectively.     

One can see that both methods produce a five-level output phase voltage. The same load 

is used to test the output voltage and current based on the two control methods. DC bus is the 

same 40V for both cases. Both methods are of low harmonic and their phase currents are close to 

sinusoidal. The THD with fundamental frequency method is lower than the one with PWM 

method. It exhibits the fundamental frequency method can reduce the harmonics based on its low  
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Fig. 4.10. Output line- line and phase voltage, phase current of the hybrid  

multilevel inverter with fundamental frequency method (m=1.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.11. Normalized FFT analysis of phase voltage, THD=6.54%.  
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Fig. 4.12. Normalized FFT analysis of phase current, 
THD=1.35%. 
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Fig. 4.13. Output line- line and phase voltage, phase current of the hybrid 

multilevel inverter with PWM method (m=1.4).  
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            Fig. 4.14. Normalized FFT analysis of phase voltage, THD=12.29%. 
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Fig. 4.15. Normalized FFT analysis of phase current, THD=3.14%. 
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switching frequency. Moreover, under the above two modulation methods, the low order 

harmonics (5th, 7th, 11th, and 13th) have been eliminated obviously. Their highest normalized 

value is no more than 5%. That means it could reduce the filter cost involved in the system. 

Fundamental frequency and PWM methods could be chosen for high power and low power stage 

in practical application in the consideration of the implementation of modulation control methods. 

Additionally, the PWM method is a better choice for renewable energy utility interface 

application, which will be introduced in the next chapter.  

The hybrid multilevel inverter can output a boosted AC voltage from input voltage. This 

boost function is reflected on the change of load current when modulation index is changed. For 

fundamental frequency, the tests to show the relationship between and modulation index are 

implemented with a three-phase load bank consisting of resistors and inductors (R = 4.55 , L = 

0.024 H). 

Different load current curves for different frequencies of 60 Hz, 100 Hz, 150 Hz, 200 Hz 

are shown in Fig. 4.16. When the frequency decreases, the load current increases with a lower  

 

 

 

 

 

 

 

 

Fig. 4.16. Load current vs. modulation index under different fundamental frequency. 
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impedance value of the inductor. When the modulation increases, the load current curve rise 

shows the boost ability of the inverter, which means better dc link utilization.  

The above feature can be proved by other test methods, comparing the achieved highest 

load voltage using the hybrid multilevel inverter and only using the bottom conventional inverter 

with the same dc bus voltage.  

Fig. 4.17 shows that the highest output voltages of the hybrid multilevel inverter are 

much higher than those of the conventional inverter. The lowest voltage boost ratio is 1.4 in the 

testing frequency coverage.  

The highest output voltage of the inverter is increasing when the frequency is increasing 

because the impedance of the inductor is increasing. Voltage boost ratio is increasing as well 

when the frequency is increasing. The reason is that the power factor is decreasing for fixed R-L 

load.   
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4.4 SUMMARY  

The proposed inverter has been validated in simulation and experiment. In this chapter, 

the simulation results with fundamental frequency and PWM modulation methods have been 

presented, which include phase voltage, line- line voltage, and phase current. A key issue to 

realize the control method is that the capacitor voltages need to be kept regulated to one half of 

the dc voltage. The capacitor voltage regulation results have been described. From the simulation 

results, one can find that the fundamental frequency and PWM scheme both make the inverter 

output zero voltage for significant time intervals so that the capacitor can be charged or 

discharged during these periods.  

This chapter has introduced a 5 kW prototype of the proposed inverter. Both fundamental 

frequency and PWM control methods are applied on the 5 kW prototype inverter. The 

experimental results including phase voltage, line- line voltage, phase current and normalized 

FFT analysis are presented. Both methods produce a five- level output phase voltage and are of 

low harmonic and close-to-sinusoidal phase currents. The relationship among the highest voltage, 

load current and different fundamental frequency has been illustrated.  
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5. FUEL CELL AND RENEWABLE ENERGY APPLICATIONS 

 

In this chapter, the proposed hybrid multilevel inverter with fuel cell system is introduced 

firstly. Then the prototype inverter is adaptively used for solar grid application and experiment 

after modification. Finally, the experiment results for the above two kinds of application are 

described and analyzed. 

 

5.1 FUEL CELL APPLICATION 

Fuel cells are regarded as a future source of generating energy due to their efficient and 

clean characteristics. They have been applied in a variety of areas such as traction, utility, and 

residential and commercial building. The Ballard NexaTM power module shown in Fig. 5.1 is 

connected to the proposed hybrid multilevel inverter as the power dc source. It is a small, low 

maintenance and fully automated system. The fuel cell can provide up to 1.2 kW of unregulated 

dc power at a nominal output voltage of 26 V. With the use of an external hydrogen fuel, its 

operation is continuous and quiet and limited only by the amount of hydrogen fuel storage.  

The fuel cell has a unique V-I characteristic and wide voltage range, which means the 

output dc voltage of the fuel cell changes with different load condition and different modulation 

index, which is not like the power supply that can output a stable dc voltage as required. This 

feature of fuel cell brings some challenges on the interface circuits, which may result in difficulty 

for high-speed, high-power operation to achieve a constant power speed ratio (CPSR) in FCVs 

applications. In addition, because the voltage of the fuel cell drops at high power mode, the 

inverter has to be an oversized design. 
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5.2 EXPERIMENTAL RESULTS FOR FUEL CELL APPLICATION 

The fuel cell is connected to the proposed hybrid multilevel inverter to do the test. 

Fundamental frequency and PWM control methods are both applied on the 5 kW prototype 

inverter systems.  

Fig. 5.2 shows the experimental results with fundamental frequency method including 

phase voltage, line-line voltage, and phase current. Fig. 5.3 and Fig. 5.4 show the normalized 

FFT analysis result of phase voltage and current. The THD of voltage and current is 9.52% and 

2.60% respectively.     

The experiment results and normalized FFT analysis with PWM method are shown in 

Fig. 5.5, 5.6 and 5.7 respectively. The THD of voltage and current is 12.93% and 3.68% 

respectively.    

 

Fig. 5.1. The Ballard NexaTM power module applied in the proposed system 
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Fig. 5.2. Output line- line and phase voltage, phase current of the hybrid  
cascaded multilevel inverter with fundamental frequency method (m=1.4).  

 
 
 

 

Fig. 5.3. Normalized FFT analysis of phase voltage, THD=9.52%.  
 

 

Fig. 5.4. Normalized FFT analysis of phase current, THD=2.60%.  
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Fig. 5.5. Output line- line and phase voltage, phase current of the hybrid  
cascaded multilevel inverter with PWM frequency method (m=1.4).  

 
 

      Fig. 5.6. Normalized FFT analysis of phase voltage, THD=12.93%.  
 

 

       Fig. 5.7. Normalized FFT analysis of phase current, THD=3.68%. 
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The five-level output phase voltage waveform is produced under the above modulation 

methods. Both methods are of low harmonic and their phase currents are close to sinusoidal, 

especially, the highest normalized value of low order harmonics (5th, 7th, 11th, and 13th) is below 

5%. The THD with fundamental frequency method is lower than the one with PWM method. 

The results are similar with the proposed inverter connected with power supply, which confirm 

the inverter operation for fuel cell system. It is noted that the unregulated fuel cell dc output 

voltage could result in the higher THD of ac output voltage than the one with a power supply.  

A three-phase R-L load (R = 4.55 , L = 0.024 H) is used to test the fuel cell output 

voltage and load current with the different modulation index. Fig. 5.8 shows the relationship 

between the fuel cell voltage and modulation index based on different frequencies 40 Hz, 60 Hz, 

100 Hz, 150 Hz, and 200 Hz. The fuel cell output voltage goes down with the increasing 

modulation index, which shows the instability of fuel cell output voltage. But the linear 

relationship means that it is feasible to adjust the modulation index to acquire a step up voltage 

based on the load demand. 

Fig. 5.9 shows the load current changes with different modulation index based on 

different frequencies 40 Hz, 60 Hz, 100 Hz, 150 Hz, and 200 Hz. When the frequency decreases, 

the load current increases with a lower impedance value of the inductor. When the modulation 

increases, the load current curve rise shows the boost ability of the inverter, which means better 

dc link utilization.  

Fig. 5.10 shows the efficiency of the proposed hybrid multilevel inverter and standard 3-

leg inverter at the acquired highest power point. The highest power is shown in Table 5.1. When 

they are applied into the fuel cell system, the efficiency of the proposed inverter is higher than  
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Fig. 5.8. Fuel cell voltage vs. modulation index under different fundamental frequency. 

Fig. 5.9. Load current vs. modulation index under different fundamental frequency. 
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Fig. 5.10. The efficiency of the proposed inverter with power supply (1), with fuel cell (2), and 

the standard inverter with fuel cell (3) at the highest power point. 
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Frequency (Hz) 
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Hybrid Multilevel Inverter with Power Supply 5083 4442 3179 2026 1256 

Hybrid Multilevel Inverter with Fuel Cell 1322 1047 629 396 291 

Standard inverter with Fuel Cell 1060 644 320 185 121 
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Fig. 5.11. Solar panel. 

the standard 3- leg inverter. Fig. 5.10 also shows the efficiency when the proposed inverter is 

connected with power supply, which is higher than the one with fuel cell. Because the highest 

power that the power supply can support is more than the design rated power of the inverter 

system 5 kW; the nominal power of the used fuel cell is 1.2 kW. 

 

5.3 SOLAR GRID APPLICATION 

As previously discussed in section 2.5 and 3.2, a multilevel inverter is ideal for utility 

interface applications with renewable energy sources due to its functions and features. Like most 

renewable energy sources, solar is intermittent. The energy storage devices that are usually 

implemented by battery banks are included in renewable energy system in order to supply ac 

electricity. 

Fig. 5.11 shows a solar panel installed at Oak Ridge National Laboratory. Fig 5.12 shows 

its V-I characteristic, which exhibits the voltage and current measured at the load bank varies  
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Fig. 5.12. Current vs. voltage measured at the load bank of a solar panel. 

 

 

 

 

 

 

 

 

 

 

 

during a day. The intermittence nature of solar panel output voltage requires some additional 

capabilities for the solar inverter. That means there are two key issues of the hybrid multilevel 

inverter for this application. One is the inverter can output an appropriate phase voltage along 

with a close-to-sinusoidal phase current; the other is the battery can follow the voltage command 

to decide charging or discharging.  

 

5.4 EXPERIMENTAL RESULTS FOR SOLAR GRID APPLICATION 

When the hybrid multilevel inverter is used for solar panel utility interface, the bottom 

standard 3- leg inverter can be connected with a solar panel, and the top H-bridges use batteries 
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applied on the inverter, the low switching frequency makes it difficult to charge the battery to a 

required voltage level. Therefore the PWM method is a better choice due to the need of battery 

charging for the inverter. In this experiment, each full H-bridge is supplied by two lead-acid 

batteries (12 V, 10 Ah) in series respectively, which is charged by the power supply connected to 

the standard 3- leg inverter.  

The experimental output phase voltage, line- line voltage, and phase current under battery 

charging, battery discharging and battery only condition are shown in Fig. 5.13, 5.14 and 5.15 

respectively, which illustrates that the proposed inverter can output an appropriate phase voltage 

along with a close-to-sinusoidal phase current for the solar panel utility interface application 

under the above different conditions.  

Fig. 5.16 shows the battery charging process when the given voltage command value is 

higher than the actual voltage value. A 13 V voltage command is given when the actual battery 

voltage is 11.7 V. The battery is charged and the voltage increases immediately. It proves that 

the battery in this system can follow the voltage command to decide charging or discharging.  

 

5.5 SUMMARY 

The applications of the proposed inverter on fuel cell system and solar grid have been 

researched in this chapter.  

When the proposed inverter is connected with the fuel cell, a five- level output phase 

voltage waveform and close to sinusoidal current are produced under the fundamental frequency 

and PWM modulation methods. The experimental results also show the proposed inverter system 

is of higher efficiency than the conventional inverter system.  

When the proposed inverter is used for solar panel interface, the batteries replaced the  
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Fig. 5.13. Output line- line and phase voltage, phase current of the hybrid multilevel 
inverter when battery charging (Vdc=80 V, Vbattery=20 V). 

 

 

Fig. 5.14. Output line- line and phase voltage, phase current of the hybrid multilevel inverter 
when battery discharging (Vdc=10 V, Vbattery=20 V). 

 
 

Fig. 5.15. Output line- line and phase voltage, phase current of the hybrid multilevel inverter 
when battery only (Vdc=0 V, Vbattery=20 V). 
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capacitors in the H-bridge as the energy storage devices. The experimental results show that the 

inverter system has two important features for solar grid applications. One is the inverter can 

output an appropriate phase voltage along with a close-to-sinusoidal phase current under battery 

charging, discharging, and battery only, which can make it work with an intermittent solar source; 

the other is the battery can follow the voltage command to decide charging or discharging.  

 

 

 

 

 

 

 

 

 

 

Fig. 5.16. Battery charging. 
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6. CONCLUSIONS AND FUTURE WORK 

 

In this chapter, the dissertation is summarized and the future works are proposed.  

 

6.1 CONCLUSIONS AND CONTRIBUTIONS 

Multilevel inverters are attracting an increasing interest in power conversion field 

because they can offer high power possibility with low output harmonics.  They can be used in a 

variety of areas such as traction motor drive or renewable energy utility interface. This 

dissertation systematically reviews the existing multilevel inverter technologies and presents a 

new hybrid multilevel inverter for voltage boost. Its structure, simulation models and results, 

development of prototype inverter, experimental results, and applications are provided.  In this 

dissertation, 

1. The previous works on multilevel inverter structures and modulation strategies have been 

reviewed. The disadvantage of current available power converters for HEVs /FCVs and 

renewable energy utility interface applications is that the inverters have low power 

density, are expensive, and have low efficiency due to the existence of bulky inductors. 

2. A cascaded multilevel inverter is a good choice. But its disadvantage is that separate dc 

sources are required for each of the H-bridges. 

3. A new hybrid multilevel inverter for voltage boost is proposed, which consists of a 

standard 3- leg inverter (one leg for each phase) and H-bridge in series with each inverter 

leg.  
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4. It can use only a single dc power source to supply a standard 3- leg inverter along with 

three full H-bridges supplied by capacitors or batteries.  It is of voltage boosting 

capability and eliminates the magnetics.  

5. The simulation models and results with PSIM and MATLAB/SIMULINK are developed. 

Fundamental frequency and PWM control methods can be both applied on the proposed 

inverter. 

6. An experimental 5 kW prototype inverter is built and tested. The experimental results 

confirm the simulation results and validate the proposed inverter.  

7. The proposed inverter could be applied in HEVs/ FCVs. Additionally, it could act as a 

renewable energy utility interface. The experimental results exhibit its advantages for the 

above two applications. 

 

6.2 RECOMMENDED FUTURE WORK  

The following work is interesting in the future.  

1. This dissertation focuses on the development of a new hybrid multilevel inverter for 

voltage boost. A FPGA controller has been used to implement the control algorithm to 

drive the motor with the real-time variable output voltage and variable frequency. 

Additionally, the capacitor voltage is detected by a voltage sensor and fed into the FPGA 

controller to realize the capacitor voltage regulation. With the developed FPGA controller, 

a closed loop control strategy for traction motor could be considered in the future.  

2. Efficiency is an important criterion for a power converter system. In this dissertation, the 

efficiency of the proposed inverter and conventional inverter has been acquired and 
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compared. It is recommended to do an accurate semiconductor loss calculation under 

fundamental frequency, PWM and other modulation schemes respectively.  

3. When the proposed inverter is applied as the renewable energy utility interface, the lead-

acid battery banks are used as the energy storage devices to supply ac electricity. The 

operation has been validated with the experiments. It is needed to develop the battery 

simulation models including battery capacity analysis and charging/discharging 

management algorithm. A charging/discharging control circuit could be added into the 

prototype inverter system based on the simulation results.   

4. This proposed inverter can be a combination of rectifier and boost converter so that it 

could be applied to carry out the plug- in function in future HEVs. The feature makes it 

possible to operate the inverter in fuel cell mode or plug- in mode such that the converter 

would have dual uses and not require an additional converter for charging.  
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