15 research outputs found

    Network Pricing for Multi-Energy Systems under Long-term Load Growth Uncertainty

    Get PDF
    The long-term uncertainty of multi-energy demand poses significant challenges to the coordinated pricing of multiple energy systems (MES). This paper proposes an integrated network pricing methodology for MES based on the long-run-incremental cost (LRIC) to recover network investment costs, affecting the siting and sizing of future distributed energy resources (DERs) and incentivizing the efficient utilization of MES. The stochasticity of multi-energy demand growth is captured by the Geometric Brownian Motion (GBM)-based model. Then, it is integrated with a system operation model to minimize operation costs, considering low-carbon targets and flexible demand. Thereafter, the kernel density estimation (KDE) method is used to perform the probabilistic optimal energy flow (POEF) to obtain energy flows under uncertain load conditions. Based on the probability density functions (PDFs) of energy flows, an LRIC-based network pricing model is designed, where Tail Value at Risk (TVaR) is used to model the risks of loading levels of branches and pipelines. The performance of the proposed methodology is validated on a typical MES. The proposed pricing method can stimulate cost-effective planning and utilization of MES infrastructures under long-term uncertainty, thus helping reduce low-carbon transition costs

    Adaptable energy systems integration by modular, standardized and scalable system architectures

    Get PDF
    Energy conversion and distribution of heat and electricity is characterized by long planning horizons, investment periods and depreciation times, and it is thus difficult to plan and tell the technology that optimally fits for decades. Uncertainties include future energy prices, applicable subsidies, regulation, and even the evolution of market designs. To achieve higher adaptability to arbitrary transition paths, a technical concept based on integrated energy systems is envisioned and described. The problem of intermediate steps of evolution is tackled by introducing a novel paradigm in urban infrastructure design. It builds on standardization, modularization and economies of scale for underlying conversion units. Building on conceptual arguments for such a platform, it is then argued how actors like (among others) municipalities and district heating system operators can use this as a practical starting point for a manageable and smooth transition towards more environmental friendly supply technologies, and to commit to their own pace of transition (bearable investment/risk). Merits are not only supported by technical arguments but also by strategical and societal prospects like technology neutrality and availability of real options

    Economic and regulatory uncertainty in renewable energy system design: a review

    Get PDF
    Renewable energy is increasingly mobilizing more investment around the globe. However, there has been little attention to evaluating economic and regulatory (E&R) uncertainties, despite their enormous impact on the project cashflows. Consequently, this review analyzes, classifies, and discusses 130 articles dealing with the design of renewable energy projects under E&R uncertainties. After performing a survey and identifying the selected manuscripts, and the few previous reviews on the matter, the following innovative categorization is designed: sources of uncertainty, uncertainty characterization methods, problem formulations, solution methods, and regulatory frameworks. The classification reveals that electricity price is the most considered source of uncertainty, often alone, despite the existence of six other equally influential groups of E&R uncertainties. In addition, real options and optimization arise as the two main approaches researchers use to solve problems in energy system design. Subsequently, the following aspects of interest are discussed in depth: how modeling can be improved, which are the most influential variables, and potential lines of research. Conclusions show the necessity of modeling E&R uncertainties with currently underrepresented methods, suggest several policy recommendations, and encourage the integration of prevailing approaches.Peer ReviewedObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.2 - Per a 2030, augmentar substancialment el percentatge d’energia renovable en el con­junt de fonts d’energiaObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No ContaminantPostprint (published version

    Optimal Flow for Multi-Carrier Energy System at Community Level

    Get PDF
    corecore