16 research outputs found

    Rotor field orientation speed and torque control of BDFM with adaptive second order sliding mode

    Full text link
    This paper presents two cascaded second order sliding mode controllers (SOSMCs) for brushless doubly fed motor (BDFM) adjustable speed system, which regulate the speed and torque. And an adaptive super twisting algorithm is incorporated into the SOSMCs to adaptively regulate the law of SOSMC. The proposed controllers for BDFM eliminate the average chattering encountered by most sliding mode control (SMC) schemes, and also possess the robustness and excellent static and dynamic performances of SMC. Simulation results show that the proposed control strategy is feasible, proper and effective. © 2013 IEEE

    A comprehensive review on brushless doubly-fed reluctance machine

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. The Brushless Doubly-Fed Reluctance Machine (BDFRM) has been widely investigated in numerous research studies since it is brushless and cageless and there is no winding on the rotor of this emerging machine. This feature leads to several advantages for this machine in comparison with its induction counterpart, i.e., Brushless Doubly-Fed Induction Machine (BDFIM). Less maintenance, less power losses, and also more reliability are the major advantages of BDFRM compared to BDFIM. The design complexity of its reluctance rotor, as well as flux patterns for indirect connection between the two windings mounted on the stator including power winding and control winding, have restricted the development of this machine technology. In the literature, there is not a comprehensive review of the research studies related to BDFRM. In this paper, the previous research studies are reviewed from different points of view, such as operation, design, control, transient model, dynamic model, power factor, Maximum Power Point Tracking (MPPT), and losses. It is revealed that the BDFRM is still evolving since the theoretical results have shown that this machine operates efficiently if it is well-designed

    A comprehensive review on brushless doubly-fed reluctance machine

    Get PDF
    The Brushless Doubly-Fed Reluctance Machine (BDFRM) has been widely investigated in numerous research studies since it is brushless and cageless and there is no winding on the rotor of this emerging machine. This feature leads to several advantages for this machine in comparison with its induction counterpart, i.e., Brushless Doubly-Fed Induction Machine (BDFIM). Less maintenance, less power losses, and also more reliability are the major advantages of BDFRM compared to BDFIM. The design complexity of its reluctance rotor, as well as flux patterns for indirect connection between the two windings mounted on the stator including power winding and control winding, have restricted the development of this machine technology. In the literature, there is not a comprehensive review of the research studies related to BDFRM. In this paper, the previous research studies are reviewed from different points of view, such as operation, design, control, transient model, dynamic model, power factor, Maximum Power Point Tracking (MPPT), and losses. It is revealed that the BDFRM is still evolving since the theoretical results have shown that this machine operates efficiently if it is well-designed

    Mathematical Approaches to Modeling, Optimally Designing, and Controlling Electric Machine

    Get PDF
    Optimal performance of the electric machine/drive system is mandatory to improve the energy consumption and reliability. To achieve this goal, mathematical models of the electric machine/drive system are necessary. Hence, this motivated the editors to instigate the Special Issue “Mathematical Approaches to Modeling, Optimally Designing, and Controlling Electric Machine”, aiming to collect novel publications that push the state-of-the art towards optimal performance for the electric machine/drive system. Seventeen papers have been published in this Special Issue. The published papers focus on several aspects of the electric machine/drive system with respect to the mathematical modelling. Novel optimization methods, control approaches, and comparative analysis for electric drive system based on various electric machines were discussed in the published papers

    Sliding Mode Control

    Get PDF
    The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area

    A new converter topology for high-speed high-starting-torque three-phase switched reluctance motor drive system

    Get PDF
    Switched reluctance motor (SRM) has become a competitive selection for many applications of electric machine drive systems recently due to its relative simple construction and its robustness. The advantages of those motors are high reliability, easy maintenance and good performance. The absence of permanent magnets and windings in rotor gives possibility to achieve very high speeds (over 10000 rpm) and turned SRM into perfect solution for operation in hard conditions like presence of vibrations or impacts. Such simple mechanical structure greatly reduces its price. Due to these features, SRM drives are used more and more into aerospace, automotive and home applications. The major drawbacks of the SRM are the complicated algorithm to control it due to the high degree of nonlinearity, also the SRM has always to be electronically commutated and the need of a shaft position sensor to detect the shaft position, the other limitations are strong torque ripple and acoustic noise effects.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Development and Implementation of Some Controllers for Performance Enhancement and Effective Utilization of Induction Motor Drive

    Get PDF
    The technological development in the field of power electronics and DSP technology is rapidly changing the aspect of drive technology. Implementations of advanced control strategies like field oriented control, linearization control, etc. to AC drives with variable voltage, and variable frequency source is possible because of the advent of high modulating frequency PWM inverters. The modeling complexity in the drive system and the subsequent requirement for modern control algorithms are being easily taken care by high computational power, low-cost DSP controllers. The present work is directed to study, design, development, and implementation of various controllers and their comparative evaluations to identify the proper controller for high-performance induction motor (IM) drives. The dynamic modeling for decoupling control of IM is developed by making the flux and torque decoupled. The simulation is carried out in the stationary reference frame with linearized control based on state-space linearization technique. Further, comprehensive and systematic design procedures are derived to tune the PI controllers for both electrical and mechanical subsystems. However, the PI-controller performance is not satisfactory under various disturbances and system uncertainties. Also, precise mathematical model, gain values, and continuous tuning are required for the controller design to obtain high performance. Thus, to overcome these drawbacks, an adapted control strategy based on Adaptive Neuro-Fuzzy Inference System (ANFIS) based controller is developed and implemented in real-time to validate different control strategies. The superiority of the proposed controller is analyzed and is contrasted with the conventional PI controller-based linearized IM drive. The simplified neuro-fuzzy control (NFC) integrates the concept of fuzzy logic and neural network structure like conventional NFC, but it has the advantages of simplicity and improved computational efficiency over conventional NFC as the single input introduced here is an error instead of two inputs error and change in error as in conventional NFC. This structure makes the proposed NFC robust and simple as compared to conventional NFC and thus, can be easily applied to real-time industrial applications. The proposed system incorporated with different control methods is also validated with extensive experimental results using DSP2812. The effectiveness of the proposed method using feedback linearization of IM drive is investigated in simulation as well as in experiment with different working modes. It is evident from the comparative results that the system performance is not deteriorated using proposed simplified NFC as compared to the conventional NFC, rather it shows superior performance over PI-controller-based drive. A hybrid fuel cell (FC) supply system to deliver the power demanded by the feedback linearization (FBL) based IM drive is designed and implemented. The modified simple hybrid neuro-fuzzy sliding-mode control (NFSMC) incorporated with the intuitive FBL substantially reduces torque chattering and improves speed response, giving optimal drive performance under system uncertainties and disturbances. This novel technique also has the benefit of reduced computational burden over conventional NFSMC and thus, suitable for real-time industrial applications. The parameters of the modified NFC is tuned by an adaptive mechanism based on sliding-mode control (SMC). A FC stack with a dc/dc boost converter is considered here as a separate external source during interruption of main supply for maintaining the supply to the motor drive control through the inverter, thereby reducing the burden and average rating of the inverter. A rechargeable battery used as an energy storage supplements the FC during different operating conditions of the drive system. The effectiveness of the proposed method using FC-based linearized IM drive is investigated in simulation, and the efficacy of the proposed controller is validated in real-time. It is evident from the results that the system provides optimal dynamic performance in terms of ripples, overshoot, and settling time responses and is robust in terms of parameters variation and external load

    Modelling and practical set-up to investigate the performance of permanent magnet synchronous motor through rotor position estimation at zero and low speeds

    Get PDF
    This thesis provides a study for the rotor position estimation in SM-PMSMs, particularly at zero and low speeds. The method for zero rotor speed is based on injection of three high frequency voltage pulses in the motor stator windings. Then, the voltage responses at the motor terminals are exploited to extract the rotor position. Two approaches, modelling and practical implementations, are presented. The obtained results have showed a verification of a high-resolution position estimation (a position estimation of 1 degree angle), a simplicity and cost effective implementation and a no need for current sensors is required to achieve the estimation process. It should be noticed that the implementation of rotor position estimation at zero speed is only attended when the rotor is at standstill or very low speed. Therefore, the motor driver is not expected to be active at this condition. Thereby, the zero speed estimation does not provide a robust torque control. In future, this should be taking into consideration to overcome this drawback and to make the estimator more reliable. At low speed running, the primary goal is to start spinning the under test motors, and then the rotor position estimation is achieved. The motor spinning is based on adopting a virtual injected signal to generate the voltage components, Vα and Vβ, of the space vector pulse width modulation technique. Then, generating the eight space vectors is conducted through storing the standard patterns of the six space vector sectors in a memory structure together with the timing sequences of each sector. The presented strategy of motor running includes a proposed motor speed control scheme, which is based on controlling the frequency of the power signal, at the inverter output, through controlling the timing period of execution the power delivery program. The thesis presents a proposed method to achieve the estimation goal depends on tracking the magnetic saliency on one motor line voltage. Thereby, the rotor position estimation The introduced proposed method, for rotor position estimation at zero speed, verifies the following contributions: - Presents a simple and cost effective zero speed rotor position estimator for the motor under test. - The aimed resolution in this thesis is an angle 1 degree. IV - Adopting solely the measuring of motor terminal voltages. Eliminating the detection of the rotor magnet polarity as a necessary technique for completing the position estimation. At low speed running, the following contributions are verified: - Rather than a real frequency signal, a virtual injected signal is adopted to generate the voltage components, Vα and Vβ of the space vector pulse width modulation technique. - The proposed method for generating the eight space vectors is based on storing the standard patterns of the six sectors in a memory structure together with the timing sequence. - The strategy of motor speed control is based on controlling the period of execution the power delivery program. - The strategy of low speed rotor position employs one motor line voltage from which the low speed estimation is achieved

    Prädiktive Regelung und Finite-Set-Beobachter für Windgeneratoren mit variabler Drehgeschwindigkeit

    Get PDF
    This dissertation presents several model predictive control (MPC) techniques and finite-position-set observers (FPSOs) for permanent-magnet synchronous generators and doubly-fed induction generators in variable-speed wind turbines. The proposed FPSOs are novel ones and based on the concept of finite-control-set MPC. Then, the problems of the MPC techniques like sensitivity to variations of the model parameters and others are investigated and solved in this work.Die vorliegende Dissertation stellt mehrere unterschiedliche Verfahren der modellprädiktiven Regelung (MPC) und so genannte Finite-Position-Set-Beobachter (FPSO) sowohl für Synchrongeneratoren mit Permanentmagneterregung als auch für doppelt gespeiste Asynchrongeneratoren in Windkraftanlagen mit variabler Drehzahl vor und untersucht diese. Für die Beobachter (FPSO) wird ein neuartiger Ansatz vorgestellt, der auf dem Konzept der Finite-Control-Set-MPC basiert. Außerdem werden typische Eigenschaften der MPC wie beispielsweise die Anfälligkeit gegenüber Parameterschwankungen untersucht und kompensiert
    corecore