12,713 research outputs found

    Scaling Properties of Parallelized Multicanonical Simulations

    Get PDF
    We implemented a parallel version of the multicanonical algorithm and applied it to a variety of systems with phase transitions of first and second order. The parallelization relies on independent equilibrium simulations that only communicate when the multicanonical weight function is updated. That way, the Markov chains efficiently sample the temporary distributions allowing for good estimations of consecutive weight functions. The systems investigated range from the well known Ising and Potts spin systems to bead-spring polymers. We estimate the speedup with increasing number of parallel processes. Overall, the parallelization is shown to scale quite well. In the case of multicanonical simulations of the qq-state Potts model (q≥6q\ge6) and multimagnetic simulations of the Ising model, the optimal performance is limited due to emerging barriers.Comment: Contribution to the Proceedings of "Recent Developments in Computer Simulational Studies in Condensed Matter Physics 2013

    Geometrical aspects of integrable systems

    Full text link
    We review some basic theorems on integrability of Hamiltonian systems, namely the Liouville-Arnold theorem on complete integrability, the Nekhoroshev theorem on partial integrability and the Mishchenko-Fomenko theorem on noncommutative integrability, and for each of them we give a version suitable for the noncompact case. We give a possible global version of the previous local results, under certain topological hypotheses on the base space. It turns out that locally affine structures arise naturally in this setting.Comment: It will appear on International Journal of Geometric Methods in Modern Physics vol.5 n.3 (May 2008) issu

    Remnant group of local Lorentz transformations in f(T) theories

    Get PDF
    It is shown that the extended teleparallel gravitational theories, known as f(T) theories, inherit some on shell local Lorentz invariance associated with the tetrad field defining the spacetime structure. We discuss some enlightening examples, such as Minkowski spacetime and cosmological (Friedmann-Robertson-Walker and Bianchi type I) manifolds. In the first case, we show that the absence of gravity reveals itself as an incapability in the selection of a preferred parallelization at a local level, due to the fact that the infinitesimal local Lorentz subgroup acts as a symmetry group of the frame characterizing Minkowski spacetime. Finite transformations are also discussed in these examples and, contrary to the common lore on the subject, we conclude that the set of tetrads responsible for the parallelization of these manifolds is quite vast and that the remnant group of local Lorentz transformations includes one and two dimensional Abelian subgroups of the Lorentz group.Comment: 10 pages. Minor changes. To appear in PR
    • …
    corecore