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It is shown that the extended teleparallel gravitational theories, known as fðTÞ theories, inherit some on
shell local Lorentz invariance associated with the tetrad field defining the spacetime structure. We discuss
some enlightening examples, such as Minkowski spacetime and cosmological (Friedmann-Robertson-
Walker and Bianchi type I) manifolds. In the first case, we show that the absence of gravity reveals itself as
an incapability in the selection of a preferred parallelization at a local level, due to the fact that the
infinitesimal local Lorentz subgroup acts as a symmetry group of the frame characterizing Minkowski
spacetime. Finite transformations are also discussed in these examples and, contrary to the common lore on
the subject, we conclude that the set of tetrads responsible for the parallelization of these manifolds is quite
vast and that the remnant group of local Lorentz transformations includes one- and two-dimensional
Abelian subgroups of the Lorentz group.
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I. INTRODUCTION

In spaces with absolute parallelism, the geometry of a
given spacetime is encoded in the tetrad field ea. This
global basis of the tangent bundle constitutes a preferred
reference frame which defines the spacetime structure
ðT ðMÞ; eaÞ. In general, any tetrad ea which serves as a
global frame leads to a certain Lorentzian geometry,
characterized by g ¼ ηabea ⊗ ea. The common belief
concerning the geometrical structure of gravitational
theories in such spaces is based on the notion of
absolute parallelism characterizing Weitzenböck space-
time. According to this description, a preferred reference
frame emerges as the agent which defines the spacetime
structure by means of a parallelization process. In principle,
the notion of parallelism so obtained should be defined only
with arbitrariness of making global Lorentz transformations
of the preferred frame, for this special tetrad field dictates
what an autoparallel is: a curve will be autoparallel if its
tangent vector has constant components with respect to the
global preferred frame. However, from a purely mathemati-
cal point of view, it has been known for a long time that if a
given space is parallelizable, the vector fields carrying out
such a parallelization are not unique [1]. On physical
grounds, and for some gravitational theories constructed
out of the concept of absolute parallelism [like fðTÞ

gravity, the one concerned in the present work], this means
that, apart from the freedom to perform global Lorentz
transformations to a given global frame, certain local
boosts and rotations will act as a symmetry group of the
theory.
Among the gravitational theories relaying on absolute

parallelism, the so-called fðTÞ gravity [2–5] has been an
object of considerable study in the last few years (see, for
instance, [6–9] and references contained therein). Since the
very beginning, it was realized that the local Lorentz
symmetry is not present in these theories [2,10–12], and
as a consequence of this, preferred reference frames emerge
as the agent encoding the gravitational field [13,14]. It is
our concern now to show that, besides the global symmetry
always present in any theory constructed upon the notion of
absolute parallelism, these preferred frames are defined
with the arbitrariness of making certain local Lorentz
transformations. The admissible group of local Lorentz
transformations depends on the particular spacetime under
consideration: for a given frame ea representing a solution
of the fðTÞmotion equations, there exist a subgroupAðeaÞ
of the Lorentz group which officiates as a symmetry group.
The presence of a restricted local invariance of this sort
have been occasionally documented in the literature; see,
for instance, Ref. [15] regarding the theory exposed in [16].
The study of the group AðeaÞ is mandatory for at least

two important reasons. On one hand, the knowledge of
AðeaÞ allows us to obtain new solutions of the motion
equations from the old. This is particularly important if they
involve the matching of different tetrads, as it happens in
stellar and wormhole models, where we have two different
spacetimes which must be smoothly matched on a certain
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hypersurface. On the other hand, in order to perform a
correct counting of degrees of freedom, detailed informa-
tion about the symmetries of the theory under consideration
becomes fundamental. These two constitute the main
motivations of the present work, and it is expected that
the techniques involved in this article might serve for
answering similar questions in other theories relying on
absolute parallelism, for instance, in Born-Infeld gravity
[17,18], and in the extensions of Gauss-Bonnet gravity in
the teleparallel context [19,20].
In order to understand the nature of AðeaÞ in the context

of fðTÞ gravity, we first set down the preliminary geo-
metrical concepts in Sec. II. After these ingredients are
presented there, we expose general relativity (GR) and its
teleparallel equivalent (TEGR) in Sec. III. The behavior of
fðTÞ theories under local Lorentz transformation is then
thoroughly discussed in Sec. IV, followed by a number of
important examples which crystallize the concepts of the
former sections. These examples are the central point of
Sec. V. Finally, we establish our conclusions in Sec. VI.

II. GEOMETRICAL SETTING

The theories where gravity is regarded as the geometry of
the spacetime rest on two basic concepts of differential
geometry: torsion Ti and curvature Ri

j,

Ti ≐ DEi ≐ dEi þ ωi
j ∧ Ej: ð1Þ

Ri
j ≐ dωi

j þ ωi
k ∧ ωk

j: ð2Þ

Torsion Ti is the covariant derivative of the 1-forms
constituting a local basis fEig of the cotangent space.
The covariant derivative D is defined by endowing the
manifold with a spin connection, which is a set of 1-forms
ωi

j taking care of additional tensor characteristics of the
object under differentiation. D is an exterior derivative on
p-forms preserving their tensor-valued features. For in-
stance, Ti is a vector-valued 2-form; it transforms as Ti0 ¼
Λi0

iTi under the change of basis Ei0 ¼ Λi0
iEi. This is so

because the spin connection transforms as

ωi0
j0 ¼ Λi0

iω
i
jΛj0

j þ Λi0
kdΛk

j0 ð3Þ

(matrices Λi
i0 , Λi0

i are inverses of each other; the dual basis
in the tangent space transforms as Ei0 ¼ Λi

i0Ei).
Analogously, Ri

j is tensorial in the indices i, j.
However, Ri

j cannot be thought of as the covariant
derivative of ωi

j because the connection is not a tensor.
Ri

j can be covariantly differentiated to obtain the (second)
Bianchi identity,

DRi
j ¼ dRi

j þ ωi
k ∧ Rk

j − ωk
j ∧ Ri

k ≡ 0: ð4Þ

Besides, by differentiating the torsion we obtain the first
Bianchi identity:

DTi −Ri
j ∧ Ej ≡ 0: ð5Þ

In gravitational theories of geometrical character, we
choose an orthonormal basis or tetrad fea ¼ eaμdxμg and
the spin connection fωa

bg to play the role of potentials for
describing the gravitational fields (torsion and curvature).
The assumed orthonormality of the tetrad establishes the
link tetrad metric:

ηab ¼ gμνeaμebν ; g ¼ ηabea ⊗ eb: ð6Þ

This link is invariant under local Lorentz transformations
ea

0 ¼ Λa0
bðxÞeb (i.e., those linear transformations preserv-

ing orthonormality). On the other hand, the spin connection
is assumed to be metric, which means the vanishing of the
covariant derivative of the Lorentz tensor-valued 0-form
ηab:

0 ¼ Dηab ¼ dηab − ωc
aηcb − ωc

bηac; ð7Þ

i.e.,

ωba ¼ −ωab ð8Þ

(Lorentz tensor indexes a; b;… are lowered with ηab). This
property also implies

Dϵabcd ¼ 0; ð9Þ

where ϵabcd is the Levi-Cività symbol, which is a tensor
under Lorentz transformations.
General relativity is a theory of gravity where the

connection is metric and torsionless; it is the Levi-Cività

connection ω
L i

j:

dEi þ ω
L i

j ∧ Ej ¼ 0; ω
L
ba ¼ −ωLab: ð10Þ

These relations can be solved for the Levi-Cività connec-
tion in terms of the exterior derivative of the tetrad:

ðωLabÞc ¼
1

2
½ðdeaÞbc þ ðdebÞca − ðdecÞab�: ð11Þ

For connections differing from the Levi-Cività connection
it is convenient to introduce the contorsion as the set of
1-forms expressing such a difference:

Ki
j ≐ ωi

j − ω
L i

j: ð12Þ

Although connections are not tensors, the nontensorial term
in the transformation (3) is equal for any connection.
Therefore, the difference between connections is a tensor.
Some useful properties of the contorsion tensor can be
consulted in Appendix A.
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III. EINSTEIN-HILBERT AND TEGR
LAGRANGIANS

In this section we will suppress the symbol of wedge
product, since no confusion exists provided that the order
between p-forms is preserved.
The Einstein-Hilbert Lagrangian is the Lorentz scalar-

valued 4-form defined as

LEH ¼ 1

4κ
ϵabcdeaebR

L cd
; ð13Þ

where κ ¼ 8πG. Property 4 of Appendix A implies that

LEH ¼ 1

4κ
ϵabcd eaebðRcd −D

L
Kcd −Kc

eKedÞ

¼ 1

4κ
½ϵabcd eaebðRcd −Kc

eKedÞ −D
L ðϵabcdeaebKcdÞ�;

ð14Þ

where we have used that the Levi-Cività connection is

metric (D
L
ϵabcd ¼ 0) and torsionless (D

L
ea ¼ 0). More-

over, D
L ðϵabcdeaebKcdÞ ¼ dðϵabcdeaebKcdÞ, because

ϵabcdeaebKcd is a Lorentz scalar. So the last term in
(14) is a boundary term that can be suppressed:

L ¼ 1

4κ
ϵabcdeaebðRcd −Kc

eKedÞ: ð15Þ

The Lagrangian (15) now contains an arbitrary connection
ωcd; however, it does not provide any dynamics for ωcd. In
fact, the Lagrangian (15) is the Einstein-Hilbert Lagrangian
(13) modulo a boundary term. Since ωcd is not contained in
the Einstein-Hilbert Lagrangian, we conclude that the
variation of (15) with respect to ωcd will produce a
boundary term to compensate for the variation of the
suppressed boundary term appearing in (14):

δωL ¼ 1

4κ
dðϵabcdeaebδωcdÞ: ð16Þ

So ωcd enters the Lagrangian (15) as a dummy variable to
be chosen in an arbitrary way. TEGR chooses ωcd to be
zero, which is the Weitzenböck connection (for the form
Weitzenböck connection acquires in a coordinate basis, see

Appendix B). So, Rcd vanishes and Kc
e ¼ −ωL

c
e½e�

becomes linear and homogeneous in derivatives of the
tetrad. Then

LTEGR ¼ −
1

4κ
ϵabcdeaebKc

e½e�Ked½e�: ð17Þ

Thus, the freezing of ωcd throws the Lagrangian into a form
quadratic in first derivatives of the tetrad [see (11)].

However, we cannot freeze a connection without paying
a price. Although ωcd is a dummy dynamical variable in
(15), it plays the important role of making (15) a Lorentz
scalar-valued volume [i.e., (15) is invariant under local
Lorentz transformations of the tetrad]. This is because Kc

e
is a Lorentz tensor as long as it is a difference between
connections. By eliminating ωcd from the Lagrangian, we
are deprivingKc

e of its tensorial character;Kc
e becomes a

connection, Kc
e½e� ¼ −ωL

c
e½e�, which only keeps a tenso-

rial behavior under global Lorentz transformations of the
tetrad [dΛk

j0 ¼ 0 in (3)]. Actually this is not a serious
problem in (17) because a local Lorentz transformation of
the tetrad just generates a boundary term, as could be
imagined. In fact, let us perform a local Lorentz trans-
formation on both sides of Eq. (14) for ωcd ¼ 0; since LEH
is not sensitive to a local Lorentz transformation, then one
obtains

δΛLTEGR ¼ 1

4κ
δΛdðϵabcdeaebKcd½e�Þ; ð18Þ

i.e.,

δΛLTEGR ¼ 1

4κ
dðϵabcdeaebηdeΛc

e0dΛe0
eÞ: ð19Þ

Therefore TEGR dynamics does not care about the local
orientation of the tetrad, meaning that TEGR, just like GR,
is only involved with the dynamics of the locally invariant
metric tensor (6). Moreover, a boundary term could be
added to the action for balancing the behavior of LTEGR in
(18). In fact, we can build the strictly local Lorentz
invariant action

STEGR½e� ¼ −
1

4κ

Z
U

ϵabcdeaebKc
e½e�Ked½e�

−
1

4κ

Z
∂U
ϵabcdeaebKcd½e�; ð20Þ

where Kc
e½e� ¼ −ωL

c
e½e�. The Lagrangian (17) is usually

written as

LTEGR ¼ ð2κÞ−1TΩ; ð21Þ

where Ω is the metric volume e0e1e2e3 ¼
det½eaμ�dx0dx1dx2dx3, and

T ¼ Kc
ecKed

d − Kc
edK

ed
c ð22Þ

is the so-called Weitzenböck scalar. In principle, T remains
invariant only under global Lorentz transformations of the
tetrad, since Kc

e has been deprived of its tensor character.
Expression (19) was obtained also in [21] by independent
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means in the context of metric affine gravity. For more
details about TEGR written in the usual index notation, see
Appendix B.

IV. LORENTZ INVARIANCE OF f ðTÞ THEORIES

An fðTÞ theory consists in a deformation of the TEGR
Lagrangian, as much as an fðRÞ theory is a deformation
of the Einstein-Hilbert Lagrangian. The teleparallel
Lagrangian density LTEGR ¼ ð2κÞ−1eT is deformed to
L ¼ ð2κÞ−1efðTÞ. The dynamical equations for fðTÞ
theories are

4e−1∂μ½ef0ðTÞSaμν� þ 4f0ðTÞeλaTρ
μλSρμν − fðTÞeνa

¼ −2κeλaT ν
λ; ð23Þ

where T ν
λ is the energy-momentum tensor (matter is

assumed to couple the metric as usual), and Saμν is a
quantity linear in the torsion that is defined in the
Appendix. The great advantage of field equations (23)
with respect to the ones coming from fðRÞ gravity is that
they are of second order in derivatives of the dynamical
field ea.
As an essential feature of fðTÞ theories, the variation

(19)—which is essentially the variation of T, since the
volume does not vary under Lorentz transformations—is
trapped in the argument of function f instead of being a
boundary term to rule out. This feature means that the
action is sensitive to local Lorentz transformations, which
implies that fðTÞ theories contain dynamics not only for
the metric, but also for some other degrees of freedom
related to the orientation of the tetrad.1 Actually, because of
Eq. (19), fðTÞ theories are invariant only under Lorentz
transformations of the tetrad accomplishing

dðϵabcdea ∧ eb ∧ ηdeΛc
f0dΛf0

eÞ ¼ 0: ð24Þ

Of course, global Lorentz transformations (dΛf0
e ¼ 0) do

fulfill Eq. (24). We wonder whether Eq. (24) has some
room for a subset of local Lorentz transformations. This
issue is essential for understanding the nature of the new
degrees of freedom added in an fðTÞ theory [23].
We shall denote AðeaÞ as the set of those local Lorentz

transformations which fulfill Eq. (24) for a given frame ea,
i.e, for a given solution of the field equations (23).AðeaÞ is
thus the set of local Lorentz transformations admissible by
a certain spacetime ea, so it is defined on shell. By virtue of
the nonlinear character of (24), it is clear that the set AðeaÞ
does not form a Lie group in general; in fact, if Λ and Λ0
belong to AðeaÞ, then the product ΛΛ0 does not necessarily
belong to AðeaÞ. Nevertheless, if we have an element of
AðeaÞ then the inverse transformation is also in AðeaÞ;

actually, since Λc
f0Λf0

e ¼ δce we can then replace Λc
f0dΛf0

e
for −Λf0

edΛc
f0 in Eq. (24).

Let us investigate now under what circumstances the set
AðeaÞ becomes a Lie group. In order to do so, we shall
write Lorentz transformations as

Λa
b0 ¼ exp

�
1

2
σghðxÞðMghÞab0

�
; ð25Þ

where σcdðxÞ are the parameters of the transformation, and
Mcd are six matrices labeled by antisymmetric indices that
generate the Lorentz group. The Mcd’s satisfy the algebra

½Mab;Mcd� ¼ ηbcMad − ηacMbd − ηbdMac þ ηadMbc:

ð26Þ

The components of matrices Mcd are

ðMcdÞab0 ¼ δacηdb0 − δadηcb0 : ð27Þ

In terms of the boost generators Kα ¼ M0α and rotation
generators Jα ¼ − 1

2
ϵαβγMβγ , the algebra (26) is

½Jα; Jβ� ¼ ϵαβγJγ

½Kα; Kβ� ¼ −ϵαβγJγ

½Kα; Jβ� ¼ ϵαβγKγ: ð28Þ

For infinitesimal Lorentz transformations, the expression
(25) takes the form

Λa
b0 ¼ δab0 þ

1

2
σghðxÞðMghÞab0 þOðσ2Þ: ð29Þ

In this case we obtain

Λc
f0dΛf0

e ≃ −
1

2
dσghðMghÞce

¼ −
1

2
dσghðδcgηhe − δchηgeÞ ¼ ηgedσgc; ð30Þ

where we have used σgh ¼ −σhg. Therefore, Eq. (24)
becomes

dðϵabcdea ∧ eb ∧ dσcdÞ ¼ 0; ð31Þ

or, equivalently,

ϵabcddðea ∧ ebÞ ∧ dσcd ¼ 0: ð32Þ

As expected, expression (32) is linear in σcd which means
that the composition of two local infinitesimal transforma-
tions belonging to AðeaÞ satisfies Eq. (32) at the lowest
order in the differential of their parameters.

1The presence of new degrees of freedom is also a feature
characteristic of fðRÞ theories (see, for instance, Ref. [22]).
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We found it very convenient to classify the solutions of
the motion equations (23) according to the number of
closed 2-forms they involve. In this manner, a given
solution ea of Eq. (23) will be called an n-closed-area
frame (n-CAF), if it satisfies dðea ∧ ebÞ ¼ 0 for n of the
six different pairs ða-bÞ (0 ≤ n ≤ 6). Clearly, from Eq. (32),
we have that if ea is a 6-CAF, then all the infinitesimal
parameters σcd remain free. This important result just states
that for a 6-CAF, we have SOð3; 1Þinf ⊂ AðeaÞ, where
SOð3; 1Þinf stands for the infinitesimal Lorentz subgroup.
Regarding finite transformations, from Eq. (24) it can

be proved that if two commuting local Lorentz trans-
formations belong to AðeaÞ then their composition is also
an element of AðeaÞ. Therefore, from the set AðeaÞ of
those local Lorentz transformations solving Eq. (24), we
can extract Abelian subgroups of the Lorentz group.
Notoriously, the result (30), which says that Λc

f0dΛf0
e is

exact at the infinitesimal level, is also valid for separate
finite boosts and rotations. As a matter of fact, finite
boosts in a given direction and rotations in a given plane
are one-parameter Lorentz transformations of the form
Λ ¼ exp½σM�, whereM is Kα or Jα depending on the case;
therefore it is Λ−1dΛ ¼ Mdσ. For instance, we have

Λ−1
K3
dΛK3

¼

0
BBB@

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

1
CCCAdσ; ð33Þ

Λ−1
J3
dΛJ3 ¼

0
BBB@

0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

1
CCCAdσ: ð34Þ

Thus, Eq. (32), which was obtained in the context of
infinitesimal transformations, remains valid also for sepa-
rated finite boosts and rotations. In particular, if ea is a
6-CAF, then Eq. (24) will be satisfied for any local boost or
rotation. This remark seems to indicate that the finite local
transformations will be organized in 6 Abelian subgroups
of dimension 1 (each corresponding to a boost in a given
direction or a rotation in a given plane). However we will
show below that for a given n-CAF, a number ⌊ n

2
⌋ of two-

dimensional Abelian subgroups of the type fKα; Jαg can
also appear (here ⌊⌋ refers to the floor function). For n ≥ 4
their appearance will actually be unavoidable.
In order to proceed constructively, let us begin by

considering a 1-CAF such that, let us say, dðe0 ∧
e3Þ ¼ 0. This property implies that the local parameter
σ12 can be freely chosen without affecting the fulfillment of
Eq. (32). As said, this result is also valid for finite local
rotations generated by M12 ¼ −J3. In fact, Eq. (34) shows
that the exact matrix-valued 1-form Λ−1

ðJ3ÞdΛðJ3Þ only
contributes to Eq. (24) through the components (1–2);

however, such a contribution is canceled whenever dðe0 ∧
e3Þ vanishes. We then get a one-dimensional subgroup of
finite local transformations (the subgroup of rotations about
x3). This reasoning is applicable to any of the other possible
closed areas as well.
In general, for an n-CAF one could expect n one-

dimensional subgroups of finite local transformations.
However, if n ≥ 2 there is a more interesting case. Let
us consider the case dðe0 ∧ e3Þ ¼ 0 ¼ dðe1 ∧ e2Þ. Then
Eq. (32) is accomplished by local transformations gener-
ated by combinations of M12 and M03 (i.e., J3 and K3).
Since these commuting generators preserve the closedness
of both areas, we can expect that the result remains valid for
finite local transformations generated by M12 and M03. In
fact, if Λ is

Λ ¼

0
BBB@

cosh σ 0 0 sinh σ

0 cos α − sin α 0

0 sin α cos α 0

sinh σ 0 0 cosh σ

1
CCCA; ð35Þ

then it will be

Λ−1dΛ ¼

0
BBB@

0 0 0 dσ

0 0 −dα 0

0 dα 0 0

dσ 0 0 0

1
CCCA: ð36Þ

So two independent local parameters σðxμÞ and αðxμÞ can
be chosen without affecting the fulfillment of Eq. (24),
because they contribute just to terms that are canceled by
the vanishing of dðe0 ∧ e3Þ and dðe1 ∧ e2Þ. So we get a
two-dimensional Abelian subgroup (we have ⌊ n

2
⌋ ¼ 1 in

this case). Schematically, we have then

dðe0 ∧ e1Þ ¼ 0 ¼ dðe2 ∧ e3Þ → fK1; J1g
dðe0 ∧ e2Þ ¼ 0 ¼ dðe1 ∧ e3Þ → fK2; J2g
dðe0 ∧ e3Þ ¼ 0 ¼ dðe1 ∧ e2Þ → fK3; J3g: ð37Þ

However, there exist other types of 2-CAFs, for instance,
the one having dðe0 ∧ e1Þ ¼ 0 ¼ dðe0 ∧ e2Þ. This 2-CAF
will lead to freeM01 ¼ K1 andM02 ¼ K2, but these do not
commute. So, the appearance or not of a two-dimensional
Abelian subgroup of the Lorentz group in a 2-CAF depends
on the closed areas it involves. It can be checked that this
is also true for a 3-CAF. In this case, if the 3-CAF involves
the proper closed areas, we also expect just one two-
dimensional Abelian subgroup (⌊ 3

2
⌋ ¼ 1).

If n ≥ 4 the emergence of two-dimensional Abelian
subgroups is unavoidable. In the case n ¼ 4; 5 we shall
obtain two of them, and for n ¼ 6 we will obtain the
maximum number of such groups, i.e., three; these will be
just fK1; J1g, fK2; J2g, and fK3; J3g. It should be noticed
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that these subgroups cannot be combined in a larger group:
only one of them can be locally applied to the solution ea

while the rest of the symmetries remain global. This is so
because the local action of one of them will affect the
closedness of the rest of the closed areas.
For n ≥ 4, let us consider a case including the subgroups

fK1; J1g, fK2; J2g [i.e., dðe0 ∧ e1Þ ¼ 0 ¼ dðe2 ∧ e3Þ and
dðe0 ∧ e2Þ ¼ 0 ¼ dðe1 ∧ e3Þ]. In such a case there is
another way of organizing the subgroups. In fact, we
can introduce the Abelian subgroups fAð1Þ; Að2Þg,
fBð1Þ; Bð2Þg, where

Að1Þ ≐ K1 þ J2; Að2Þ ≐ K2 − J1;

Bð1Þ ≐ K1 − J2; Bð2Þ ≐ K2 þ J1: ð38Þ

The Lorentz transformation generated by Að1Þ is
ΛAð1Þ ¼ exp½σAð1Þ�. So the matrix Λc

f0dΛf0
e in Eq. (24) is

Λ−1
Að1ÞdΛAð1Þ ¼ Að1Þdσ ¼

0
BBB@

0 1 0 0

1 0 0 1

0 0 0 0

0 −1 0 0

1
CCCAdσ: ð39Þ

The rest of the cases are obtained by using the matrices

Að2Þ ¼

0
BBB@

0 0 1 0

0 0 0 0

1 0 0 1

0 0 −1 0

1
CCCA;

Bð1Þ ¼

0
BBB@

0 1 0 0

1 0 0 −1
0 0 0 0

0 1 0 0

1
CCCA;

Bð2Þ ¼

0
BBB@

0 0 1 0

0 0 0 0

1 0 0 −1
0 0 1 0

1
CCCA: ð40Þ

As can be seen, the contributions of any of these local
transformations to Eq. (24) will be canceled by the closed-
ness of the areas (0–1), (2–3), (0–2), and (1–3). It is worth
noticing that fAð1Þ; Að2Þg (fBð1Þ; Bð2Þg) constitute the
Abelian sector of the little group for massless particles
traveling towards decreasing (increasing) values of x3 [24].2

We conclude this section with two remarks. Of course,
the classification of tetrads through the number of closed
areas they contain is not invariant under global Lorentz
transformations. Actually we can use the always admis-
sible global Lorentz transformations to maximize the
number n for the tetrad under consideration. Besides, the
scheme of n-CAFs does not exhaust the chances of
obtaining a local invariance for a given solution of the
equations of motion (23). For instance, even if e0 ∧ e1

were not closed, σ23 could admit a limited dependence on
the coordinates without destroying the validity of
Eq. (32). This means, on one hand, that even for a 0-
CAF the possibility of a restricted local invariance is still
present, and on the other, that the remnant group for a
given n-CAF can be larger than that considered in the
paragraphs above. This restricted local invariance
depends on the form of each solution and it should be
considered in each particular case, as we will show in the
next section.

V. EXAMPLES

In this section we will offer a number of simple but quite
important examples that will help to visualize the ideas
displayed in the preceding paragraphs.

A. Minkowski spacetime

Perhaps one of the most important cases to be
analyzed should be Minkowski spacetime, because it
approximately represents the geometrical arena where our
daily experience takes place. For this reason it is our
concern now to figure out what kind of local Lorentz
transformations we are free to perform in the Euclidean
frame (see below), in order to be unable to distinguishing
them from the outcomes of experiments performed in our
local lab.
The Euclidean frame ea ¼ δabdxb is a global smooth

basis for Minkowski spacetime (the xb’s refer to x0;α, where
xα are Cartesian coordinates). Since Ta ¼ dea ¼ 0, the
Weitzenböck scalar is identically null, and the Euclidean
frame is a vacuum solution of Eq. (23) for any fðTÞ
function smooth at T ¼ 0 [14].3

The Euclidean frame is perhaps the best example of a
6-CAF. Therefore, fðTÞ theories that are smooth at T ¼ 0
do not distinguish among locally related orthonormal
frames in Minkowski spacetime. In other words, the
absence of gravity in fðTÞ theories is revealed as an
incapability in the selection of a preferred parallelization
at a local level.

2The little group also includes the rotations generated by J3.
Thus, its algebra gets the form of the algebra of translations and
rotations in the Euclidean plane. It has been proved that Að1;2Þ,
Bð1;2Þ generate gauge transformations of the electromagnetic field
[25,26].

3Other fðTÞ deformations of GR, such as the ones used for
describing the late time cosmic speed-up [for instance,
fðTÞ ¼ T þ α=T], do not have Minkowski spacetime as a
vacuum solution. Instead, they lead to a constant but non-null
T, and so, to a de Sitter or anti–de Sitter spacetime.
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B. Cosmological spacetimes

1. Spatially flat FRW spacetimes

The diagonal frame e0 ¼ dt, eα ¼ aðtÞδαi dxi is a sol-
ution to Eq. (23) for flat Friedmann-Robertson-Walker
(FRW) spacetimes [13]. This frame is a 3-CAF since
dðe0 ∧ eαÞ ¼ 0, ∀ α. Because of the comments made in
the last section, we expect AðeaÞ to include at least three
one-dimensional Abelian subgroups of the Lorentz group.
Actually, Eq. (24) is accomplished for any local rotation
σβγðxaÞ of the diagonal frame ea, because for every pair
ð0αÞ, we have a pair ðβγÞ (since these last two are different
from α), and there are three such pairs. Then, AðeaÞ
includes the three Abelian subgroups of rotation about a
given axis.
A nice example of the behavior discussed at the end of

the last section (i.e., the presence of an admissible trans-
formation even though eα ∧ eβ is not closed) can be shown
as follows. Since we have

dðeα ∧ eβÞ ¼ 2aa
·
dt ∧ dxα ∧ dxβ; ð41Þ

we note that three Lorentz boosts σ0γðt; xα; xβÞ of ea will
also lead to an equivalent solution of the dynamical
equations (23) (take note that γ ≠ α ≠ β). This is so
because the 1-form dσ0γ in Eq. (32) does not contain a
term proportional to dxγ , so the wedge product dðeα ∧
eβÞ ∧ dσ0γ is null. Then, for this particular 3-CAF, we have
that AðeaÞ contains not three, but six independent gen-
erators σ0γðt; xα; xβÞ and σβγðxμÞ. Nevertheless, it is impor-
tant to realize that the three one-dimensional Abelian
subgroups of boosts in a given direction [generated by
σ0γðt; xα; xβÞ], are constrained to possess a restricted
dependence on the spacetime coordinates xμ. For instance,
if we consider a boost in the t − x plane, we have that the
generator can depend just on ðt; y; zÞ. For boosts in the
remaining planes, analogous comments are in order.
Because of this, even though this particular 3-CAF does

not allow the emergence of a two-dimensional Abelian
subgroup of the form fKαðxμÞ; JαðxμÞg [as explained in the
paragraph below Eq. (37)], we still expect three Abelian
subgroups of dimension 2 with restricted coordinate
dependence contained in AðeaÞ. Precisely, these are the
ones generated by

fKxðt; y; zÞ; JxðxμÞg
fKyðt; x; zÞ; JyðxμÞg
fKzðt; x; yÞ; JzðxμÞg: ð42Þ

Spatially flat FRW cosmological models admit, hence, an
infinite number of proper tetrads, organized in the Abelian
subgroups of the Lorentz group just mentioned. This strong
result seems to suggest that some claims present in the
literature regarding superluminal propagating modes and

nonuniqueness of time evolution in fðTÞ theories [27,28]
should be revised in light of the new developments here
introduced.

2. Spatially curved FRW spacetime

The parallelization of closed and open FRW universes is
much less obvious. In these cases we can write the line
element as

ds2 ¼ dt2 − a2ðtÞk2½dðkψÞ2 þ sin2ðkψÞðdθ2 þ sin2 θdϕ2Þ�;
ð43Þ

where ðψ ; θ;ϕÞ are standard hyperspherical coordinates on
the three-sphere. The parameter k appearing in (46) takes
the values k ¼ 1 for the spatially spherical universe and
k ¼ i for the spatially hyperbolic one.
In Ref. [13] it was shown how one can find a global

frame for spatially curved FRW spacetimes, i.e., a global
basis that turns the dynamical equations (23) into a
consistent system of differential equations for the scale
factor aðtÞ. It reads

e0 ¼ dt; eα ¼ aðtÞEα; ð44Þ

where the 1-forms Eα are

E1

k
¼ −k cos θdψ þ sin θ sinðkψÞ cosðkψÞdθ
− sin2ðkψÞsin2θdϕ;

E2

k
¼ k sin θ cosϕdψ

− sin2ðkψÞ½sinϕ − cotðkψÞ cos θ cosϕ�dθ
− sin2ðkψÞ sin θ½cotðkψÞ sinϕþ cos θ cosϕ�dϕ;

E3

k
¼ −k sin θ sinϕdψ

− sin2ðkψÞ½cosϕþ cotðkψÞ cos θ sinϕ�dθ
− sin2ðkψÞ sin θ½cotðkψÞ cosϕ − cos θ cosϕ�dϕ:

ð45Þ

Many fewer local symmetries are left in this case,
because the frame (44) is just a 0-CAF. Nonetheless, since
dðe0 ∧ eαÞ ¼ dt ∧ deα, we can say that time-dependent
rotations σβγðtÞ are authorized by Eq. (32). Thus, we get
three one-dimensional Abelian subgroups composed of
time-dependent rotations about a given axis.

3. Bianchi type I models

Homogeneous and anisotropic Bianchi type I models are
described by the line element
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ds2 ¼ dt2 − a21ðtÞdx2 − a22ðtÞdy2 − a23ðtÞdz2: ð46Þ

The manifold topology is R4, so a proper parallelization is
given by the frame e0 ¼ dt, e1 ¼ a1dx, e2 ¼ a2dy,
e3 ¼ a3dz. Although Bianchi type I spacetimes contain
less isometries than FRW cosmologies, we can easily check
that dðe0 ∧ eαÞ ¼ 0, ∀ α, so we are in the presence of a 3-
CAF once again, and the same comments of Sec. V B 1 are
in order.

VI. CONCLUDING COMMENTS

For special kinds of frames, the so-called n-CAFs (which
include Minkowski spacetime and a wide variety of
cosmological models), we have obtained in Sec. IV a
number of results regarding certain conditions for a local
Lorentz transformation that belongs to the set AðeaÞ. In
particular, for 6-CAFs, we have concluded the following:
(1) Any infinitesimal local Lorentz transformation be-

longs to AðeaÞ.
(2) Regarding finite transformations, we have that

hKαðxμÞ; JαðxμÞi ⊂ AðeaÞ, where KαðxμÞ; JαðxμÞ
are the six generators of the two-dimensional Abe-
lian subgroups of the Lorentz group. In particular,
six one-dimensional Abelian subgroups are included
in AðeaÞ (boosts in a given direction and rotations
about a given axis).

As a direct consequence, we see that there are infinitely
many adequate tetrads representing Minkowski spacetime
in fðTÞ gravity. This result does not mean that any tetrad
giving rise to the Minkowski metric is a solution of the
fðTÞ motion equations in vacuum. For instance, the tetrad

e0 ¼ dt; e1 ¼ dr; e2 ¼ rdθ; e3 ¼ r sin θdϕ;

ð47Þ

corresponding to ds2 ¼ dt2 − dr2 − r2ðdθ2 þ sin2 θdϕ2Þ,
is not a solution of the vacuum field equations, because it
fails to be a basis of the tangent space at r ¼ 0, and so, it is
not a parallelization of Minkowski spacetime. This is so
because (47) can be obtained from the Euclidean frame by
means of a local Lorentz transformation which is not an
element of AðeaÞ. Precisely, the Euclidean frame in
spherical coordinates stands as (just change coordinates
in ea ¼ δabdxb)

e0 ¼ dt;

e1 ¼ sin θ cosϕdrþ r cos θ cosϕdθ − r sin θ sinϕdϕ;

e2 ¼ sin θ sinϕdrþ r cos θ sinϕdθ þ r sin θ cosϕdϕ;

e3 ¼ cos θdr − r sin θdθ: ð48Þ

The tetrad (47) can be obtained from (48) by means of a
local rotation which, however, does not satisfy Eq. (24)
because the involved generators do not commute.

For n-CAFs (flat FRW and Bianchi type I models of
Sec. V being in this category), the picture is more
restrictive, and the statements made for 6-CAFs change to
(1’) Some infinitesimal local Lorentz transformations,

generated by n one-dimensional subgroups of the
infinitesimal Lorentz group, belong to AðeaÞ.

(2’) Regarding finite transformations, a number ⌊n=2⌋
of two-dimensional Abelian subgroups of the form
KαðxμÞ; JαðxμÞ might arise, depending on the par-
ticular closed area involved. For n ≥ 4 these Abe-
lian subgroups will actually exist. In particular, n
one-dimensional Abelian subgroups will be in-
cluded always in AðeaÞ. Sometimes, depending
on the specific form of the n-CAF, an additional
(restricted) Lorentz invariance can exist [see,
e.g., Eq. (42)].

Finally, we would like to mention some remaining open
questions of conceptual guise. One of these concerns the
relationship between the isometries of a given spacetime
ðT ðMÞ; eaÞ, and its remnant set AðeaÞ. Perhaps it would
be plausible to think that an increase in the number of
isometries will lead to an enlargement of the set AðeaÞ. It
should be clear from the examples examined above that
this is not actually true. All FRW spacetimes have the
same number of isometries, whereas the set AðeaÞ is
considerably larger for spatially flat models. More dras-
tically, curved FRW spacetimes have a notoriously smaller
AðeaÞ compared with the less symmetric Bianchi type I
models.
Presumably, the answer to this issue underlies the global

properties of the cited spacetimes and not only in their local
geometry. As a matter of fact, flat FRW and Bianchi type I
spacetimes both have topology R4, and they are both
represented by 3-CAFs. In turn, due to that fact that (let
us say) closed FRW spacetimes have topology R × S3, we
should expect a more involved global behavior concerning
the parallelization process, which reflects itself in the fact
that the frame (45) is just a 0-CAF.
As a final remark, we can comment on an important

result obtained in Refs. [29,30]. There it was shown that
where the connection is other than the Levi-Cività con-
nection, the notion of an inertial reference frame can still be
defined locally by means of local normal frames. This is a
realization of the equivalence principle in theories with
torsion, which means that in a spacetime with an arbitrary
(though metric compatible) connection, we still recover the
Minkowskian behavior locally. It would be interesting to
figure out under what circumstances this property will still
hold for (torsional) theories of gravity in which the Lorentz
symmetry is not fully present, in the sense discussed in this
work. By virtue of the result here obtained, the existence of
locally inertial frames would assure (locally) the full
Lorentz symmetry of any spacetime arising as a solution
of the fðTÞ field equations, and so a well-behaved causal
structure at a local level [31].
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APPENDIX:

1. On the contorsion tensor

Some properties of the contorsion tensor can be enu-
merated as follows:
(1) The equation of geodesics in an arbitrary connection

is ðDU=DτÞi ¼ Ki
jðUÞUj, so the contorsion repre-

sents the gravitational force.
(2) Ti ¼ Ki

j ∧ Ej, then ðTiÞjk ¼ ðKi
kÞj − ðKi

jÞk
[combine Eqs. (1), (10) and (12)].

(3) If D
L

is the covariant derivative associated with
the Levi-Cività connection (10), then it results

in DKi
j −D

L
Ki

j ¼ 2Ki
k ∧ Kk

j.

(4) Ri
j−R

L i

j¼D
L
Ki

jþKi
k∧Kk

j¼DKi
j−Ki

k∧Kk
j.

(5) Kba ¼ −Kab [use (8)].
(6) Kabc ≐ ðKabÞc ¼ − 1

2
½ðTaÞbc þ ðTbÞca − ðTcÞab� ¼

− 1
2
½ðDeaÞbc þ ðDebÞca − ðDecÞab� [use Property 2 and

Eq. (1)].

2. TEGR in usual language

The Weitzenböck connection is defined in a given
orthonormal basis feag as ωcd ¼ 0. Since ea ¼ eaμdxμ,
one realizes that the transformation between coordinate
and orthonormal bases uses the coefficients Λa

μ ¼ eaμ.
According to (3), if the connection vanishes in the basis
feag, then it transforms to a coordinate basis as ðωμ

νÞλ ¼
eμa∂λeaν , which is the familiar form of Weitzenböck con-
nection. In Weitzenböck spacetime, it is Tμ ¼ Ddxμ ¼
ωμ

ν ∧ dxν ¼ eμa∂λeaνdxλ ∧ dxν, i.e.,

Tμ
λν ¼ eμað∂λeaν − ∂νeaλÞ: ðA1Þ

To recover the familiar form of LTEGR one writes
Kc

e ¼ Kc
efef, so

LTEGR ¼ −
1

4κ
Kc

efKed
gϵabcdeaebefeg: ðA2Þ

In this expression one recognizes the volume 4-form Ω,

eaebefeg ¼ ϵabfg Ω ¼ ϵabfgedx0dx1dx2dx3; ðA3Þ

where e ≐ det½eaμ�. We use the identity ϵabfgϵabcd ¼
−2ðδfcδgd − δgcδ

f
dÞ to obtain

LTEGR ¼ 1

2κ
ðKc

ecKed
d − Kc

edKed
cÞΩ: ðA4Þ

According to property 4 of Appendix A it is Kc
ec ¼

−Tc
ec, Ked

d ¼ −Td
d
e (we exploited the antisymmetry of

torsion). Also, Kc
edKed

c¼Kc½ed�Ked
c¼ð−1=2ÞTc

edKed
c.

Then,

Kc
ecKed

d − Kc
edKed

c ¼ Tc
ecTd

d
e þ 1

2
Tc

edKed
c

¼ 1

2
Tc

edðTa
aeδdc − Ta

adδec þ Ked
cÞ

¼ Tc
edSced;

where

Sced ≐ 1

2
Ked

c þ Ta
a½eδd�c ¼ 1

2
Ked

c þ Ka
a½eδd�c : ðA5Þ

The quantity Tc
edSced is the Weitzenböck scalar T. All

these quantities behave tensorially under local Lorentz
transformations whenever the spin connection is not frozen
to zero. Otherwise, they are tensors just under global
Lorentz transformations.
The boundary term in (20) contributes −ð4κÞ−1×

dðϵabcdeaebKcdÞ to the Lagrangian. This exact 4-form
can be rewritten in terms of a four-divergence. Notice
that

dðϵabcdeaebKcdÞ ¼ dðϵabcdKcd
eeaebeeÞ;

where

eaebee ¼ −ϵabefΩðefÞ:

Therefore

dðϵabcdeaebKcdÞ ¼ dð2ðδecδfd − δfcδedÞKcd
eΩðefÞÞ

¼ 4dðKcd
cΩðedÞÞ ¼ 4divðKcd

cedÞΩ

¼ 4

e
∂μðeKcd

ce
μ
dÞΩ: ðA6Þ

According to (11) it is

Kcd
c½e� ¼ −ðdecÞdc ¼ ηdb∂λecνðeλceνb − eλbe

ν
cÞ

¼ ηdbeλceνbð∂λecν − ∂νecλÞ:

By comparing with Eq. (A1), one obtains

dðϵabcdeaebKcdÞ ¼ 4

e
∂μðeTλ

λ
μÞΩ:
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