475 research outputs found

    Structural Analysis of a Dragonfly Wing

    Get PDF
    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned for carrying these loads, is however not fully understood. To study this we made a three-dimensional scan of a dragonfly (Sympetrum vulgatum) fore- and hindwing with a micro-CT scanner. The scans contain the complete venation pattern including thickness variations throughout both wings. We subsequently approximated the forewing architecture with an efficient three-dimensional beam and shell model. We then determined the wing’s natural vibration modes and the wing deformation resulting from analytical estimates of 8 load cases containing aerodynamic and inertial loads (using the finite element solver Abaqus). Based on our computations we find that the inertial loads are 1.5 to 3 times higher than aerodynamic pressure loads. We further find that wing deformation is smaller during the downstroke than during the upstroke, due to structural asymmetry. The natural vibration mode analysis revealed that the structural natural frequency of a dragonfly wing in vacuum is 154 Hz, which is approximately 4.8 times higher than the natural flapping frequency of dragonflies in hovering flight (32.3 Hz). This insight in the structural properties of dragonfly wings could inspire the design of more effective wings for insect-sized flapping micro air vehicles: The passive shape of aeroelastically tailored wings inspired by dragonflies can in principle be designed more precisely compared to sail like wings —which can make the dragonfly-like wings more aerodynamically effective

    Study of the oscillation of a wing mounted on an elastic suspension

    Get PDF
    In this paper we explore the resonant properties exhibited by insects during hovering and present a wing actuation mechanism based on the structure of the insect thorax. A mathematical model of the proposed actuation mechanism is developed. An analysis of the influence of spring stiffness, flapping frequency and drag coefficient on the torque and mechanical power required for wing movement is carried out. We show that driving the actuation mechanism at resonant frequency helps to reduce inertial costs of accelerating and decelerating the wings

    Can scalable design of wings for flapping wing micro air vehicle be inspired by natural flyers?

    Get PDF
    Lift production is constantly a great challenge for flapping wing micro air vehicles (MAVs). Designing a workable wing, therefore, plays an essential role. Dimensional analysis is an effective and valuable tool in studying the biomechanics of flyers. In this paper, geometric similarity study is firstly presented. Then, the pw−AR ratio is defined and employed in wing performance estimation before the lumped parameter is induced and utilized in wing design. Comprehensive scaling laws on relation of wing performances for natural flyers are next investigated and developed via statistical analysis before being utilized to examine the wing design. Through geometric similarity study and statistical analysis, the results show that the aspect ratio and lumped parameter are independent on mass, and the lumped parameter is inversely proportional to the aspect ratio. The lumped parameters and aspect ratio of flapping wing MAVs correspond to the range of wing performances of natural flyers. Also, the wing performances of existing flapping wing MAVs are examined and follow the scaling laws. Last, the manufactured wings of the flapping wing MAVs are summarized. Our results will, therefore, provide a simple but powerful guideline for biologists and engineers who study the morphology of natural flyers and design flapping wing MAVs

    Toward a Dielectric Elastomer Resonator Driven Flapping Wing Micro Air Vehicle

    Get PDF
    In the last two decades, insect-inspired flapping wing micro air vehicles (MAVs) have attracted great attention for their potential for highly agile flight. Insects flap their wings at the resonant frequencies of their flapping mechanisms. Resonant actuation is highly advantageous as it amplifies the flapping amplitude and reduces the inertial power demand. Emerging soft actuators, such as dielectric elastomer actuators (DEAs) have large actuation strains and thanks to their inherent elasticity, DEAs have been shown a promising candidate for resonant actuation. In this work a double cone DEA configuration is presented, a mathematic model is developed to characterize its quasi-static and dynamic performance. We compare the high frequency performance of two most common dielectric elastomers: silicone elastomer and polyacrylate tape VHB. The mechanical power output of the DEA is experimentally analyzed as a DEA-mass oscillator. Then a flapping wing mechanism actuated by this elastic actuator is demonstrated, this design is able to provide a peak flapping amplitude of 63° at the frequency of 18 Hz

    Dynamic simulation and optimization of artificial insect-sized flapping wings for a bioinspired kinematics using a two resonant vibration modes combination

    Get PDF
    This paper addresses the design of the elastic structure of artificial wings to optimize their dynamical behaviour to reproduce insect wings kinematics. Our bioinspired kinematics is based on the original concept of using the resonant properties of the wing structure in order to combine the motion of two vibration modes, a flapping and a twisting mode, in a quadrature phase shift. Oneway of achieving this particular combination is to optimize the geometry and elastic characteristics of the flexible structure such that the two modes are successive in the eigenspectrum and close in frequency. This paper first proposes a semi-analytical model, based on assembled Euler-Bernoulli beams, to understand, compute and optimize the artificial wing dynamic vibrations. Then, using this model, it is shown that it is possible to obtain several artificial wing structures with a flapping and a twisting mode close in frequency. Finally, experimental validations are performed on micromachined insect-sized prototypes to validate the model and the concept

    Design and Control of Flapping Wing Micro Air Vehicles

    Get PDF
    Flapping wing Micro Air Vehicles (MAVs) continues to be a growing field, with ongoing research into unsteady, low Re aerodynamics, micro-fabrication, and fluid-structure interaction. However, research into flapping wing control of such MAVs continues to lag. Existing research uniformly consists of proposed control laws that are validated by computer simulations of quasi-steady blade-element formulae. Such simulations use numerous assumptions and cannot be trusted to fully describe the flow physics. Instead, such control laws must be validated on hardware. Here, a novel control technique is proposed called Bi-harmonic Amplitude and Bias Modulation (BABM) which can generate forces and moments in 5 vehicle degrees of freedom with only two actuators. Several MAV prototypes were designed and manufactured with independently controllable wings capable of prescribing arbitrary wing trajectories. The forces and moments generated by a MAV utilizing the BABM control technique were measured on a 6-component balance. These experiments verified that a prototype can generate uncoupled forces and moments for motion in five degrees of freedom when using the BABM control technique, and that these forces can be approximated by quasi-steady blade-element formulae. Finally, the prototype performed preliminary controlled flight in constrained motion experiments, further demonstrating the feasibility of BABM

    Aerodynamic analysis and experiment of a micro flapping wing rotor

    Get PDF
    This project is aimed at developing a bio-inspired flyable micro/nano aerial vehicle (MAV) of high agility and performance capable of vertical take-off and landing and hovering (VTOLH). To achieve the aim, a novel flapping wing rotor (FWR) concept invented by Dr. Guo has been adopted, which is ideal for MAVs of sub 60 gm and especially for nano scale of sub 5 gm according to aerospace industry’s definition. The advantages and potential of the FWR concept for MAV development has been studied consistently by Dr. Guo’s research team in the last five years. However making a flyable micro FWR model especially in sub 5gm and demonstrate its VTOLH feasibility remains as a big challenge and has not been achieved in previous projects. To meet the above objective, the first achievement in the project is the successful design, build and test of a flyable micro FWR model (FWR-EX1) of only 3 gm based on off-the-shelf available micro motor. The key breakthrough is to achieve the necessary large aeroelastic twist of the flapping wing during the upstroke in an adaptive manner for structural and aerodynamic efficiency. To achieve the next objective for design and performance improvement, study has also been focused on deeper scientific understanding and analysis of the FWR mechanisms. Attention has therefore been paid to a systematic study on aerodynamic modelling and efficiency of the FWR. The method is based on a revised quasi-steady aerodynamic model that combines the theoretical method and experimental data. The numerical results of the revised quasi-steady aerodynamic model are in agreement with existing results obtained via CFD methods. Based on the model and analysis, the optimal kinematics for the FWR has been determined. Subsequently a comparison of the FWR aerodynamic efficiency was made with two other most studied configurations of MAVs, the insect flapping wing and rotorcraft ... [cont.]

    Liquid-amplified zipping actuators for micro-air vehicles with transmission-free flapping

    Get PDF

    Two modes resonant combined motion for insect wings kinematics reproduction and lift generation

    Get PDF
    This paper presents an original concept using a two resonant vibration modes combined motion to reproduce insect wings kinematics and generate lift. The key issue is to design the geometry and the elastic characteristics of artificial wings such that a combination of flapping and twisting motions in a quadrature phase shift could be obtained. This qualitatively implies to bring the frequencies of the two resonant modes closer. For this purpose, a polymeric prototype was micromachined with a wingspan of 3 cm, flexible wings and a single actuator. An optimal wings configuration was determined with a modeling and validated through experimental modal analyses to verify the proximity of the two modes frequencies. A dedicated lift force measurement bench was developed and used to demonstrate a lift force equivalent to the prototype weight. Finally, at the maximum lift frequency, high-speed camera measurements confirmed a kinematics of the flexible wings with flapping and twisting motions in phase quadrature as expected.ANR-ASTRID CLEARFlight (ANR-13-ASTR-0012), RENATECH program, Direction Generale de l’Armement et Haut-de-France Regio
    • …
    corecore