205,736 research outputs found

    Dna2 is a structure-specific nuclease, with affinity for 5'-flap intermediates

    Get PDF
    Dna2 is a nuclease/helicase with proposed roles in DNA replication, double-strand break repair and telomere maintenance. For each role Dna2 is proposed to process DNA substrates with a 5'-flap. To date, however, Dna2 has not revealed a preference for binding or cleavage of flaps over single-stranded DNA. Using DNA binding competition assays we found that Dna2 has substrate structure specificity. The nuclease displayed a strong preference for binding substrates with a 5'-flap or some variations of flap structure. Further analysis revealed that Dna2 recognized and bound both the single-stranded flap and portions of the duplex region immediately downstream of the flap. A model is proposed in which Dna2 first binds to a flap base, and then the flap threads through the protein with periodic cleavage, to a terminal flap length of ~5 nt. This resembles the mechanism of flap endonuclease 1, consistent with cooperation of these two proteins in flap processing

    Flex flap

    Get PDF
    To provide flap with large upper surface radius as required for airplanes with over-the-wing blowing, distort upper surface of flap by actuator. Flap can be used as control surface at leading as well as trailing edges and, with minor modification, as variant of Jacobs-Hurkamp air flap

    Vertical rectus abdominis myocutaneous versus alternative flaps for perineal repair after abdominoperineal excision of the rectum in the era of laparoscopic surgery

    Get PDF
    Aims: Plastic surgical reconstruction of the perineum is often required after abdominoperineal excision of the rectum. Options for this reconstruction include a vertical rectus abdominis myocutaneous (VRAM) flap, gluteal fasciocutaneous flap, and gracilis myocutaneous flap. Although the VRAM flap is well established at most centers, less experience exists with the gluteal and gracilis flaps. In the era of laparoscopic colorectal resection, plastic surgeons are being forced to use gluteal and gracilis flaps because the VRAM flap must be tunnelled intra-abdominally requiring laparotomy. We therefore aimed to systematically review the evidence comparing VRAM, gluteal, and gracilis flaps. Methods: A comprehensive, structured literature search was conducted using Medline, Google Scholar, and Science Direct. Studies included were randomized control trials and observational studies documenting complication rates associated with the VRAM, gluteal, or gracilis flap. Results: Eleven studies meeting all inclusion and exclusion criteria were identified. When meta-analyzed, the overall rate of any perineal wound or flap complication among VRAM patients (35.8%) was significantly lower than gluteal flap (43.7%) and gracilis flap patients (52.9%) (P = 0.041). Conclusions: The VRAM flap is well established for perineal reconstruction, and this study suggests that it may be superior to the gluteal and gracilis flaps in terms perineal wound and flap complication rates. This should be taken into account when weighing up the risks and benefits of a laparoscopic approach to abdominoperineal excision of the rectum. Large studies making direct comparisons between the flap options should be conducted

    Flap Endonuclease Disengages Dna2 Helicase/Nuclease from Okazaki Fragment Flaps

    Get PDF
    Okazaki fragments contain an initiator RNA/DNA primer that must be removed before the fragments are joined. In eukaryotes, the primer region is raised into a flap by the strand displacement activity of DNA polymerase {delta}. The Dna2 helicase/nuclease and then flap endonuclease 1 (FEN1) are proposed to act sequentially in flap removal. Dna2 and FEN1 both employ a tracking mechanism to enter the flap 5' end and move toward the base for cleavage. In the current model, Dna2 must enter first, but FEN1 makes the final cut at the flap base, raising the issue of how FEN1 passes the Dna2. To address this, nuclease-inactive Dna2 was incubated with a DNA flap substrate and found to bind with high affinity. FEN1 was then added, and surprisingly, there was little inhibition of FEN1 cleavage activity. FEN1 was later shown, by gel shift analysis, to remove the wild type Dna2 from the flap. RNA can be cleaved by FEN1 but not by Dna2. Pre-bound wild type Dna2 was shown to bind an RNA flap but not inhibit subsequent FEN1 cleavage. These results indicate that there is a novel interaction between the two proteins in which FEN1 disengages the Dna2 tracking mechanism. This interaction is consistent with the idea that the two proteins have evolved a special ability to cooperate in Okazaki fragment processing

    Wind tunnel test results of a new leading edge flap design for highly swept wings, a vortex flap

    Get PDF
    A leading edge flap design for highly swept wings, called a vortex flap, was tested on an arrow wing model in a low speed wind tunnel. A vortex flap differs from a conventional plain flap in that it has a leading edge tab which is counterdeflected from the main portion of the flap. This results in intentional separation at the flap leading edge, causing a vortex to form and lie on the flap. By trapping this vortex, the vortex flap can result in significantly improved wing flow characteristics relative to conventional flaps at moderate to high angles of attack, as demonstrated by the flow visualization results of this tests

    Calculated effect of various types of flap on take-off over obstacles

    Get PDF
    In order to determine whether or not flaps could be expected to have any beneficial effect on take-off performance, the distances required to take off and climb to an altitude of 50 feet were calculated for hypothetical airplanes, corresponding to relatively high-speed types and equipped with several types of flap. The types considered are the Fowler wing, the Hall wing, the split flap, the balanced split flap, the plain flap, and the external-airfoil flap. The results indicate that substantial reductions in take-off distance are possible through the use of flaps, provided that the proper flap angle corresponding to a given set of conditions is used. The best flap angle for taking off varies inversely as power loading and, to a much smaller extent, varies inversely with wing loading. Apparently, the best take-off characteristics are provided by the type of device in which the flap forms an extension to the main wing as in the case of the Fowler wing and the external-airfoil flap

    A study of high-lift airfoils at high Reynolds numbers in the Langley low-turbulence pressure tunnel

    Get PDF
    An experimental study was conducted in the Langley Low Turbulence Pressure Tunnel to determine the effects of Reynolds number and Mach number on the two-dimensional aerodynamic performance of two supercritical type airfoils, one equipped with a conventional flap system and the other with an advanced high lift flap system. The conventional flap system consisted of a leading edge slat and a double slotted, trailing edge flap with a small chord vane and a large chord aft flap. The advanced flap system consisted of a leading edge slat and a double slotted, trailing edge flap with a large chord vane and a small chord aft flap. Both models were tested with all elements nested to form the cruise airfoil and with the leading edge slat and with a single or double slotted, trailing edge flap deflected to form the high lift airfoils. The experimental tests were conducted through a Reynolds number range from 2.8 to 20.9 x 1,000,000 and a Mach number range from 0.10 to 0.35. Lift and pitching moment data were obtained. Summaries of the test results obtained are presented and comparisons are made between the observed aerodynamic performance trends for both models. The results showing the effect of leading edge frost and glaze ice formation is given

    Full scale upper surface blown flap noise

    Get PDF
    A highly noise suppressed TF 34 engine was used to investigate the noise of several powered lift configurations involving upper surface blown (USB) flaps. The configuration variables were nozzle type (i.e. slot and circular with deflector), flap chord length, and flap angle. The results of velocity surveys at both the nozzle exit and the flap trailing edge are also presented and used for correlation of the noise data. Configurations using a long flap design were 4 db quieter than a short flap typical of current trends in USB flap design. The lower noise for the long flap is attributed primarily to the greater velocity decay of the jet at the flap trailing edge. The full-scale data revealed substantially more quadrupole noise in the region near the deflected jet than observed in previous sub-scale tests

    Externally blown flap impingement parameters

    Get PDF
    The performance of two externally blown flap (EBF) wind tunnel models was compared with an engine exhaust flap impingement correlation parameter. One model was a four engine EBF triple slotted flap transport. Isolated engine wake surveys were conducted to define the wake properties of five separate engine configurations for which performance data were available. The other model was a two engine EBF transport for which the engine wake properties were estimated. The correlation parameter was a function of engine exhaust dynamic pressure at the flap location, area of engine exhaust flap impingement, total exhaust area at the flap location, and engine thrust. The distribution of dynamic pressure for the first model was measured; however, the distribution for the second model was assumed to be uniform

    Wind-Tunnel Investigation of the Effect of Tab Balance on Tab and Control-Surface Characteristics

    Get PDF
    An investigation was conducted to furnish data on the effect of tab balance on tab and control-surface characteristics. The airfoil tested had a modified NACA 65(1)-012 contour with a plain flap having a chord equal to 25 percent of the wing chord and with a tab having a chord equal to 25 percent of the flap chord and having several nose shapes and overhang lengths. The results of the investigation indicated that, in general, tab balance affected tab hinge-moment characteristics in much the same manner that flap balance affects flap hinge-moment characteristics. A moderate amount of tab balance did not seem to have any adverse effect on flap hinge-moment characteristics
    corecore