

No. 568

OH PAKE-OFF OVER OBSTACJES

Jangley Kemorial Aeronautical Laboratory

Washington
May 1936

MATIONAI AIVISORY COMMITTEE FOR AERONAUTICS

TECHNIOAI NOTE NO. 568

CAICUIATED EFFECT OF VARIOUS TYPES OF FLAE
ON TAKE-OFF OVER OBSTACIES
By J. W. Wetmore

SUMMARY

In order to determine whether or not flaps could be expected to have any beneficial effect on take-off performance, the distances required to take off and climb to an altitude of 50 feet were calculated for hypothetical airplanes, corresponding to relatively high-speed types and equipped with several types of flap. The types considered are the Fowler wing, the Hall wing, the spiit flap, the balanced split flap, the plain flap, and the ex-ternal-airfoil flap.

The results indicate that substantial reductions in take-off distance are possible through the use of flaps, provided that the proper flap angle correspording to a given set of conditions is used. The best flap angle for taking off varies inversely as power loading and, to a much smaller extent, varies inversely with wing loading. Apparentiy, the oest takemoff characteristics are provided by the type of device in which the flap forms an axtension to the main wing as in the case of the Fowler wing and the external-airfoil flap.

INTRODUCTION

The present trend toward very high speeds and higher wing and power loadings in airplane design lends increased importance to the problem of improving take-off performance. controllable and automatic propellers have proted to be of considerable value in reducing take~off distances but, with these exceptions, little else has been accomplished toward this end.

A number of high-lift devices have been developed" ${ }^{\circ}$ compensate for the effects of high wing loading and clean

Ifnes on landing performance. Those of the flap type have proved very satisfactory for use on highm speed airplanea since they not only provide the desired effectiveness in landing but also cause little or no detriment to the mari-- mum speed.

The purpose of this analysis was to determine whethex or not such deyices might also serve to improve takemoff performance. Calculations of the horizontal distance to take off and climb to an altitude of 50 feet were made for a number of assumed cases involving the use of several types of flap and covering wing and power loading conditions corresponding to those encounterec in high-speed airplanes.

The types of high-lift devices considered are:
Fowler wing
Hall wing
Split flap
Balanced split flap
Plain flap External-airfoil flap

These devices were chosen arbitrarily to provide a reasonable number of cases. For each type of device, the aize of flap considered was that which rould probably be most commonly used in practice. Several flap anglea were investigated for each type. Calculations were also made for a hypothetical wing having ideal characteristics providing for the greatest posaible reduction in take-off distance. The plain-wing, or flap-neutral, condition was included as the basis of comparison for the various devices. Ranges of wing and power loadinge were chosen to include most high-speed conditions.

It is intended in this analysis to provide a comparison amone the variour devices and conditions considered rather then to present accurate values for individual casef.

METHOD OF ANALYSIS

Asgumptions. The takeroffs were assumed to be made at full power throughout, with no prind, and to consist of three phases: first, the accelexated run over the ground at the attitude of least total resistance up to the best
speed for taking off; second, the transtition arc, or period of change, of tie filght path from that of the ground run to that of the steady climb; and third, the steady climb up to an altitude of 50 feet. The last two phases were assumed to be made at the fame speed as tho take-off.

It was assumed that an automatic propellar permitting development of full rated ongine speed and brake horsepowor at all air spoeds would be used. It should bo notad that the rosults will apply vory ficarly as rell to the case of a coitrollable propelier with a singlo bladoangle sotting for the low-spoed rango since in this range the optimum blade angle varies only slightly. A parasitedrag coefficient of 0.02 was takan for all cases as représcntative of the high-speed higaty loadod type of airplano and. was assumed to be independer of angle of attack. A value of 0.05 was used for the coefficient of ground friction corresponding to average laninng-field gurface conditions. No correction mas made for ground effect owing to the difficulty and uncertainty of applying available information on the subject of this work. The probable influence on the results of neglecting tifis effect is discussed at another point.

The lift and drag characteristics for the hypothetical ideal wing were so chosen as to provide an indication of the limit to which reduction in total take-off distance through modffications to the wing is possible. The prafile drag was assumed to be zëro añ a value of 3.2 "شas taken for the meximum lift coefficient, as the calculationa indicated that higher values of lift coefficient than this Would afford little or no added advantage in taking off under normal loading conditions. Probably such a combinam tion of lift and drag cheracteristics could be approachod only with some device incorporating boundary-layer control.

Test data:- The lift and drag cheracterłstic̄s used in the calculations were obtained from wind-tunnei-test data of model wings equipped with full-span flaps of the various types to be investigated (references l to 6), the arrangement and dimensions of which are shown in figure 1. The tests were all made in the same wind tunnel but a different system of testing and a different Reynolds Number were used for the plain flap and the balanced spijt flap from tho ones used for the other dovices so that thoy mäy not be strictly comperable. No correction was made for jet-boundary effect with either tost system, but it was
found that the reaults in efther case correspond very nearly to an aspect ratio of 5 for free air. The Reynolds Kumber for the tests of the plain-flap and balanced split flap was 1,218,000 and for the other devices 609,000. The Clark Y aixfoil section was used for the main wing of all the devices with the exception of the extornal-airfoil flap, which was fitted to a wing having the N.A.C.A. 23012 airfoil section. With this device the flap is extonded in tho noutral position instoad of being rotractod into the wing as in tho case of tho othors. For this work, however, the lift and drag coefficionts and wing loading wero bascd. on the main-piane aroa alono rathor than on the total area sinco-in this way the minimum drag coofficient with tho flap noutral corrosponds to that for the plain Clark \ddagger wing, or flap-noutral, condition of the othor dovices.

Qalculations.- The general equation of motion for the atrplañ during the ground run is:

$$
\begin{equation*}
W / g v \frac{d v}{d x}=T-D-\mu(T-L) \tag{1}
\end{equation*}
$$

Where T is the sross weight of the airplane; T, D, and I are the thrust, drag, and ifft, respectively, at any instant, corresponding to the speed ∇; and μ is the coefficient of rolling friction between the wheels and the ground, i.e., the ratio of rolling resistance to wheel loading, assumed to be constant. Since

$$
\begin{aligned}
& D=C_{D_{I}} \rho / 2 s V^{2} \\
& I=C_{I_{I}} \rho / 2 s V^{2}
\end{aligned}
$$

Where $C_{I_{2}}$ and $C_{D_{1}}$ correspond to the attitude maintained during the ground run
and

$$
T=T_{0}-\mathbb{T} \rho / 2 \nabla^{2}
$$

whero To is tho static thrust, and K is the constant of Iincar variation of thrust with tho square of the speed (as oxplainod later); oquatioz (1) may bo intogratod botwoon the limits $V=0$ and $V=\nabla_{T}$, tho speed of takeoff, to give the equation for the diftence covered in the ground run:
$\left.D_{I}=\frac{\pi / S}{\rho g\left[\left(\mu C_{I_{1}}-C_{D_{1}}\right)-\frac{K}{S}\right]} \log _{e}\left[1+\frac{\left(\mu C_{I_{1}}-C_{D_{1}}\right)-\frac{W}{S}}{\left(\frac{T_{0}}{W}-\mu\right)\left(\frac{\sigma / S}{\rho} \frac{\rho}{2} V_{T} z\right.}\right)\right]$
The attitude of least resistance during the ground run is defined by the algebraic maximum of the factor $\mu C_{I_{1}}-C_{D_{1}}$ and this value was therefore used in the calculations.

The actual motion of the airplane in the transition arcis defined by very complex equations. For this anelysis, however, it was considered sufficiently accurate to assume a simple motion as in reference for which the path of the airplane during the transition consists of an arc of constant radius tangent to the ground and extending to the height at which the proper angle of climb is attained.

The radial acceleration during the transition is then:

$$
I_{1} \text {, the lift required for straight flight. }
$$

Since R is constant it may be defined from the condi-

It is obvious that the arc radius R and therefore the horizontal distance required in performing the transition , becomes shortor as the difference botween $C_{I_{2}}$ and $C_{I_{T}}$

$$
\begin{align*}
& \frac{V^{2}}{R}=\frac{I_{2}-I_{1}}{W / g} \\
& \text { from which } \\
& R=\frac{W / g V^{2}}{I_{2}-I_{1}} \\
& \text { Where } \quad \mathrm{i} \text { is the arc radius, } \\
& \text { tions at the beginning of the arc.as } \\
& \text { or } \\
& R=\frac{W / g V_{T}{ }^{a}}{I_{z}-\frac{T}{T}} \\
& R=\frac{2 \cdot W / S}{\rho g}\left(\frac{1}{\sigma_{I_{2}}-C_{I_{T}}}\right) \tag{3}
\end{align*}
$$

increases. In order that this difference shall be as large as possible, $\mathcal{C}_{L_{2}}$ is taken as ${ }^{C_{J_{m a x}}}$. This pracedure may not be valid in some cases where the excess power is very low, that is, where the drag and the wing and power loadings are high. For such cases, however, the transition distance is so short in comparison with the distances covered in the other two phases of the take-off that the error involved is slight. The assumption of an arc of constant radius involves, of course, also the assumption that angle of attack and lift coefficient change instantaneously at the beginning and conclusion of the transition, which although actually not true probably introduces only a small error.

The horizontal distance covered in the transition is given by:

$$
\begin{equation*}
D_{z}=R \sin \theta=\frac{2 I / S}{\rho G}\left(\frac{I}{C_{I_{\max }}-C_{I_{T}}}\right) \sin \theta \tag{4}
\end{equation*}
$$

Where θ is the flight-path anglo during the subsequent stoady cimb.

Tho anglo of the flight path during the last phaso of the ta:e-off, the steady climb, is determined from

$$
\sin \theta=\frac{T-D}{\vec{T}}
$$

for whoch the thrust T is assumed to act along the flight path, or

When, since

$$
\begin{aligned}
\sin \theta= & \frac{\mathbb{D}_{0}}{\pi}-\left(\frac{E}{S}+C_{D_{3}}\right) \frac{\rho / 2 V_{3}^{2}}{\pi / S} \\
& \frac{\rho / 2 V_{3}^{2}}{\pi / S}=\frac{\cos \theta}{C_{L_{3}}}
\end{aligned}
$$

and $\cos \theta$ may be taken as 1 in view of the generally small values of θ,

$$
\sin \theta=\frac{T_{0}}{\pi}-\left(\frac{E}{S}+c_{D_{3}}\right) \frac{1}{C_{I_{3}}}
$$

Where $D_{I_{3}}$ and $C_{D_{3}}$ correspond to the speed V_{3} maintained in the steady climb.

In reference 7 it is shown that to realize the shortest tom tail talremoff

$$
C_{I_{3}}=C_{I_{T}}
$$

and therefore

$$
\begin{equation*}
\sin \theta=\frac{T_{O}}{W}-\left(\frac{K}{S}+c_{D_{T}}\right) \frac{1}{C_{I_{T}}} \tag{5}
\end{equation*}
$$

The horizontal distance covered in the steady climb is

$$
\begin{equation*}
D_{3}=\frac{H_{2}-H_{1}}{\tan \theta} \tag{6}
\end{equation*}
$$

Where H_{2} is the height to be cleared (50 feet) and H_{1} is the height attained in the transition, or

$$
H_{1}=R(1-\cos \theta)
$$

In the determination of the thrust relations for use in the oquations, the automatic propellers were assumed to permit full rated engine speed and brake horsepower at all air speeds. Propeller diameters giving maximum effieciency at top speed Fere determined, according to the method and information of reference 8 , for a number of conditions involving various values of maximum speed and brake horsepower. The thrust characteristics in the low-speed, takeoff range for these conditions were derived from data given in reference 9 .

For a given propeller the variation of thrust from the static condition was found to be very nearly linear with the square of the velocity in the take-off range and can therefore be expressed as

$$
\Delta T=K \rho / 2 V^{2}
$$

Moreover, for a series of propellers designed for the same top speed the value of K varies directly with brake horsepower

01

$$
\mathbb{K}=B \times b \cdot h p
$$

Where the factor B depends on the top speed $V_{\text {max }}$. Then

$$
\Delta T=B \times b \cdot h p \cdot \times \rho / 2 \nabla^{2}
$$

Iirewise the static thrust To was shown to vary directm Iy with brake horsepower, for a given top apeed, so that

$$
T_{0}=A \times b, h p
$$

where A is also a function of $V_{m a x}$.
Thus, the thrust at any spe日d in the take-off range for any condition becomes

$$
\begin{equation*}
T=b \cdot h p \cdot\left(A-B p / Z \nabla^{2}\right) \tag{7}
\end{equation*}
$$

The relations between the factors A and B and maximum speed are ghown in figure 2(a).
A.t maximum speed the equation of forces is

$$
\frac{T_{V_{\text {max }}}}{W}=\left[C_{D_{0}}+C_{D_{D}}+\frac{4}{\rho^{2} \pi A \cdot R \cdot}\left(\frac{W / 5}{V_{\max }^{2}}\right)^{2}\right] \cdot \frac{\rho \nabla_{\max }}{2} \frac{\pi / S}{}
$$

Where A.R. is the effective aspect ratio, ${ }^{C_{D}} D_{p}$ the parasitemarag coeificient, and C_{D} the minimum ping profiledrag coefficient. The value of $C_{D_{0}}=0.010$ was taken犬rom füll-scale tëst dàta since this corresponded more closely to high-speed conditions than the value 0.015 dem termined by the lawmscale teste from. Which the characterm istics of the high-lift devices were obtained.
I : was found that $T_{\text {max }}$ also variea directiy with urake horsepQwer for a Eiven top gpeed so that $\cdots \frac{T_{\max }}{T}=\frac{C(n i p}{W / h p}$

Where O is a function of $V_{\text {max }}$ as shown in figure $2(a)$.
Brom these equations the relation betweon π / S, H / hp. and $\nabla_{m a y}$ may be determined. This relationshipis shown in figure $2(3)$. It is then possible to determine the falues of. the factars A and B, to correapond to given wing and poner loading condjtions.

The equations for the various phases of the takeoff become in their final form:

Ground run:

$K=B A$

$$
D_{1}=\frac{W / S}{\rho g\left[\left(\mu C_{I_{2}}-C_{D_{1}}\right)-B \frac{W / S}{W / h D_{0}}\right]}
$$

$$
\begin{equation*}
\log _{\theta}\left[1+\frac{\left(\mu \sigma_{I_{1}}-\sigma_{D_{1}}\right)=B \frac{W / S}{W / h p_{2}}}{\left(\frac{A}{W / h p}-\mu\right) \sigma_{I_{T}}}\right] \tag{8}
\end{equation*}
$$

Transition:

$$
\begin{equation*}
D_{2}=\frac{2}{\rho G} \cdot\left(\frac{I}{C_{I_{\max }}-C_{I_{T}}}\right)\left[\frac{A}{\pi / h p}-\left(B \frac{W / S}{W} / \frac{C_{D}}{}\right) ; \frac{I}{C_{I_{M}}}\right] \tag{9}
\end{equation*}
$$

Steady climb:

$$
D_{3}=
$$

For each set of conditions several values of $\overline{\bar{C}_{I}}$ within corresponding values of ${ }^{{ }^{D_{T}}}$ were assumed in order to determine the minimum total distance for that condition.

RESULTS

1
The minimum total takeoff distances for all the devices and conditions considered are listed in table I. Figures 3 and 4 show the effect of variation of flap angie on the total takeoff distance for tie Fowler wing and the
 ing the shortest total takeoff distance are plotted against porer loading for three wing loadings for each of
the high-lift devices considerod. The total take-ofe diatance at the best flap amgles for all the devices is plotted againgt power loading for three ving loadings in figures 6, 7, and 8. Curves for the plain-wing, or flapneutral, condition (for the oxternal-airfoil flap) and for the ideal wing are also included in these figuresfor comparison. In figure 9, the ground run, transition, and climb for takemoff at best flap angles are plotted eeparately against power loading for one ming-loading condition. The plafn-wing, or flap-neutral, condition also is shown here for comparison.

Although not of primary importance to the comparisons, it may be of some interest to note the lift coefficienta corresponding to the best take-offs. For the Fowler wing and external-airfoil flap, the shorteat total distance With the flaps deflected to their best angle is apparently realized when the takemoff is made at a lift coefficient of about 78 percont of tho maximum, regardless of the loading condition. For all the other Gevicos considered, the lift coofficiont giving the shortest talro-off distance, although independent of wing loading, varies from about ą percent of the maximum lift coefficient at the lowest power loading to about 89 percent at the highest.

DISGUSSION

The extent to which the total take-off distance is influenced by the angle of the flap may be seen in figures 3 and 4 . There is a fairly definite minimum on all the curves therefore, in order to derive the greateat posaible benefit in taking off for a given set of conditiona, the flap should be set at, or very close to, the propor angle to correspond to those conditions. This consideration is particularly important at the higher wing and power loadings for which the take-off distance increages more abruptly than at lower loadings with variation of flap angle from tife optimum value. The effect may be more critical Fith one type of device than with another as shown by the differences in tho curves for the Eall and Howler wings, Which represent the extremes of variation of all the devices considered; in any case, however, the effect is- oufficiently merked to deserve considerable attention.

Figure 5 shoms that the variation in best flap anglo with power loading may be fairly large. The magnitude of
this variation differs coñiderably among the several devices but, its trend is very nearly the same; in all cases the best flap angle decreases with increasing power loading. The best flap angle varies with wing loading in the same manner but to a much smaller extent than with power loading. Apparently no general conclusions can be dramn as to the proper flap angle to be used for a given set of conditions, as it varies rather widely among the different devices and would probably vary considerably with different flap sizes for the same device.

Fisures 6, 7, and 8 indicate that appreciable savings in total take-off distance may be expected through use of any of the high-lift devices considered when operating at their optimum flap angles. Fith a given device and wing loading the percentage reduction in distance from that required with the plain-wing or flap-neutral condition decreases very nearly linearly with an increase in power loading. On the other hand, for a given device and a given power loading, the percentage reduction is practically constant for all wing loadings.

Of the particular form of devices considered, the Fowler wine and external-airfoil flap appear to be by far the most promising, both requiring very nearly the same take-off distance except at high powor loadings where the distance for the latter is somerhat shorter. As the take= off distance for the flap-neutral condition of the exter-nal-airfoil flap is considerably less than for the plainwing condition (corresponding to flap neutral with the Fowler wing) the actual reduction in takemoff is greater With the Fowler wing. For the Fowler wing the reduction ranges from 44 percent at the lowest power loading to 27 percent at the fighest. For the external-airfoil fiap the reduction from the flap-neutral condition varies from 36 to 21 percent. With the plain Clark Y Fing as the besis of comparison, the reduction witin the external-airfoil flap is between 42 and 29 percent. There is little difference between the Eall. Fing and split flap in total take-off distance, the reduction in both cases over the distance required for the plain wing ranging betwoen 24 and 11 percent. Although the restults for the piain flap and the balanced split flap are not strictly comparablo With those for the other devices, a soparato comparison should be valid. Of the two, the balanced split flap gives the shortor take-off for all conditions, the roduction for this device varying from 30 to 16 percent Fith powor loading. Tho reduction provided by the plain flap is betwoon 22 and 12 percent.

For the idoal $\begin{aligned} & \text { ing the raduction in total take-off }\end{aligned}$ distanco from the plain-サing condition is approximately 50 percont for all. loading conditions, being slightly greater than this at low power loadings and slightly less at the high values. This-value may be considered as tho limit to which such reduction is passible.

Owing to the neglect of ground effect, these estimites of the reductions in takemoff distance gained Fith the various devices are probably somewhat conservative. Since the influence of ground proximity on a wing is.essontially to increase its effective aspect ratio (roferonce 10), the resultant reduction in induced drag would be consicurably groater with the high-lift devices than with the plain $\begin{gathered}\text { ing, thus tending to roduce the take-off dism }\end{gathered}$ tance more for tho formor case than for the lattor and honce increase tho advantage of the high-lift dovices. There is some evidence to the effect that nearness to the ground produces increased ifft, particularly at low ancles of attack, but information regarding this phenomenon is of such a nature as not to permit a prediction of the effect that it would have on the results of this analysia.

Some consideration shoula likewise be given to the possible effect of wind on the comparisons. This effect may be. considered as the sumation of the effects of a wind of constant velocity and a corresponding wind velocity gradient with altitude (reference li). It may be seen that ordinarily the time required to take off and climb to a given altitude will be longer, in proportion to the horizontaj: distance covered, with the high-lift devices than With the plain winge consequentiy, the effect of a gteady wind, which is roughly proportional to the time required, will result in a greater percentage reduction in distance With the high-lift devices than with tho plain wing. Calculations have indicated that tho offect increases the percentage reduction in total tako-off distance botween that for tie plain wing and that for the high-lift devices by a small amount. Tine wind gradient, the effect of rhich depends on the rate of climb, would uaually be of greatest benefit to the plain-ming condition. Its effect is, however, less than that of the steady wind so that the overall effect of vind would slightly increase tho advantage of the high-lift device.

It is interesting to note from figure 9, which ghows the effect of the $\forall a r i o u s$ devicos on the separate phases of the take-ofif at a ring loading of 18.3 ; that practical-
ly all the difference betweon the total take-off distance With the flaps operating at their optimum angles and with the flaps neutral may be accounted for by the differenco in ground run. Although the distance coverea in the steady climb is less $\begin{aligned} & \text { ith the flap neitral than with the flap de- }\end{aligned}$ flected to its best angle, the distanco required in performing the transition is correspondingly greater so that in general, the distance covored from the instant the airplane leaves the ground until it atteins an altitude of 50 -feet is very nearly the same in either case. It should be remembered, however, that the flap angle giving the shortest total take-off distance will not ordinarily correspond to that giving the shortest ground run so that the maximum reduction in the ground run probabiy would not be a true indication of the maximum reduction in the total take-off distance.

CONCIUSIONS

1. Substantial reductions in the distance required by an airplane to take off and ciimb to an altitude of 50° feet should be possible through the use of flaps.
2. It is necessary to use the proper flap angle corm responding to a given loading condition in order to realize the gieatest advantage to be gained with the flaps.
3. The optimum flap angles for take-off vary inversely as the power loading and in the same mariner but to a much less extent with wing loading.
4. The flap arrangement for which the flap forms an extension to the main wing, as with the Fowler fing and external-airfoil flap, appears to provide the best characteristics for take-off.

Langloy liemorial Acronautical Laboratory, National Advisory Committee for Aeronautics, Langley Field, Va., April $24,1935$.

REFERENCES

1. Teicic, Fred F., and Sanders, Robert: Hind-Tunnel Testo of a Hall High-Lift Wing. T. N. No. 417- M.A.C.A., 1932.
2. Teicle, Fred 巴., and Harris, Thomas A.: The Aerodynamic Characteristics of a riodel Ting Haring a Split Tlap Deflected Downward and moved to the Rear. T.N. No. 422, N.A.C.A., 1932.
3. Platt, Robert C.: Aerodynamic Characteristics of a Ting with Fowler Flaps Including Hlap Loada, Downwash, and Calculated Effect on Take-Off, T. R. No. 534, N.A.C.A.
4.
5. Platt, Robert C. Aerodynamic Characteristics of Fings With Cambered External-Airfoil Flaps. Including Lateral Control with a.FullmSpan Flap. T.R. No. 541, N.A.C.A., 1935.
6. Teruinger, Carl J.: Wind-Tunnel Investigation of the Aerodynamic Balancing of Upper-Surface Ailerong and Split Flaps. T.R.No. 549, N.A.C.A., 1935.
7. Tenzinger, Carl J.: Find-Tunnel Investigation of Ordim nary and Split Flaps on Airfoils of Different Prom file. T.R.NO. 554, N.A.C.A., 1935.
8. Schrenk, Martin: Take-Off-and Fropelier Thrust. T.M. No: 703. N.A.C.A., 1933.
9. Weicir, Fred F.: Forifing Charts for tie Selection of Aluminum Alloy Propoliers of a Standard Form to Oporate with Various Aircraft 刃ngines and Bodies. T.R. NO. 350 , IN.A.C.A., 1930 .
10. Hartman, \#dwin P.: Negativo Thrust and Torque Characm toristics of an Adjustablo-Pitch liotal Propolior. T.R. No. 464, N.A.C.A., 1933.
11. Roid, EIIiott G. A Full-Scalo-Investigation of Ground Effect. T.R. No. 265, N.A.C.A., 1927.
12. Thompson, F. Le, Poer, W. C., and. Beard, A. P.: Air Conditions close to tho Ground and the Effoct on Airplanc Landings. T.R. No. 489, N.A.C.A. 1934.

TABIDB I
MINIMUM TOTAL DISTANCE IN FGEI TO TAKE OFF AND CLINB TO 50 FHETI

Hing loading (T/S)			29.4	29.4	29.4	21.7	21.7	21.7	16.3	16.3	16.3
Pover loading (H/hp.)			15.0	11.0	8.0	15.0	11.0	8.0	15.0	11.0	8.0
Maximum speed ($\mathrm{V}_{\mathrm{max}}$)			194	221	245	176	202	225	160	181	205
Device	Flap angle degress	${ }^{I_{\text {max }}}$									
Plain wing	-	1.26	3410	2545	2065	2525	1840	1490	1875	1360	1080
Fowler wing	10	2.10	2550	1715	1360	1865	1260	985	1415	945	725
	20	2.50	'2550	1610	1230	1810	1170	875	1375	865	645
	30	2.75	2785	1635	11557	1945	ITY0	820	1455	865	610
	40	2.83	3660	1780	1205	2455	1275	840	1740	930	625
Hall wing	10	1.63	3060	2110	1690	2235	1540	1240	1665	1145	905
	20	1.84	3560,	2115	1595	2545	1520	1140	1835	1110	835
	30	1.95	14700	2495	1630	8330	1715	1165	3290	1230	850
Split flap	15	1.59	3010	2125	1715	2205	1565	1250	1670	1170	910
	30	2.87	3760	2105	1580	2585	1510	1130	1880	1110	835
	45	2.07	\bigcirc	2510	$1590{ }^{\circ}$	13700	17.40:	1115	3535	1205	825
$\begin{aligned} & \text { Balanced } \\ & \text { split flap } \end{aligned}$	15	1.56	2875	2135	1740	2110	1550	1235	1570	1140	905
	30	1.78	2960	1985	1545	2135	1445	1120	1595	1065	820
	60	2.06	4770	2035	1495	2865	1460	1050	1940	1065	775
Plain flap	15	1.51	3050	2220	1795	2210	1605	1290	1660	1200	945
	30	1.70	3370	2160	1675	2460	1545	1205	1800	1150	873
	60	1.85	∞	2960	$18: 10$	10650	1905	1230	3370	1320	885
Externalairfoil flap	-4	1.44	3055	2220	1840	2210	1620	1325	1685	1230	965
	20	2.55	2460	1575	1205.	1760	1145	860	1330	850	640
	30	2.73	2920	1650	1205	2040	1195	835	1495	870	625
	40	2.76	4520	1860	1245	2765	1305	865	1900	935	640
Ideal wing	- -	3.20	1775	1240	980	1305	915	695	1020	695	525

Figure I.- Arrangement and dimensions of the various types of flaps.

Figure 2a.-Thrust relations for automatic propellers.

Figure 2b.- Relation between wing loading, power loading, and maximum speed.

Figure 3.-Variation of total take-off distance with flap angle for the Fowler ring.

Figure 4.--Variation of total take-off distance with flap angle for Hall wing.

Figure 6.-Variation of total take-off distance at best flap angle with power loading. (F ing loading, $W / \mathrm{S}=16.3$)

1, \#xternal-airfoil flap neutraI
2, Plain flap
3, Balanced split flap

Figure 7-Variation of total take-off diatance at best flap angle with power loading. (Wing loading, $W / S=21.7$)
N.A.C.A. Technical Note No. 568

Fig. 8

Figure 8.-Variation of totel take-off distance at best flap angle with power loading. (Wing loading, $\mathbb{W} / \mathrm{S}=29.4$)

Fi'ieure 9.-Variation of distance covered in the different phases of the take-off at best flap angle with power loading. (Fing loading, W/S = 16.3).

