1,745 research outputs found

    Fixpoint semantics and simulation

    Get PDF
    A general functorial framework for recursive definitions is presented in which simulation of a definition scheme by another one implies an ordering between the values defined by these schemes in an arbitrary model. Under mild conditions on the functor involved, the converse implication also holds: a model is constructed such that, if the values defined are ordered, there is a simulation between the definition schemes. The theory is illustrated by applications to context-free grammars, recursive procedures in imperative languages, and simulation and bisimulation of processes. (C) 2000 Elsevier Science B.V. All rights reserved.</p

    Model-Checking Process Equivalences

    Full text link
    Process equivalences are formal methods that relate programs and system which, informally, behave in the same way. Since there is no unique notion of what it means for two dynamic systems to display the same behaviour there are a multitude of formal process equivalences, ranging from bisimulation to trace equivalence, categorised in the linear-time branching-time spectrum. We present a logical framework based on an expressive modal fixpoint logic which is capable of defining many process equivalence relations: for each such equivalence there is a fixed formula which is satisfied by a pair of processes if and only if they are equivalent with respect to this relation. We explain how to do model checking, even symbolically, for a significant fragment of this logic that captures many process equivalences. This allows model checking technology to be used for process equivalence checking. We show how partial evaluation can be used to obtain decision procedures for process equivalences from the generic model checking scheme.Comment: In Proceedings GandALF 2012, arXiv:1210.202

    Initial Draft of a Possible Declarative Semantics for the Language

    Get PDF
    This article introduces a preliminary declarative semantics for a subset of the language Xcerpt (so-called grouping-stratifiable programs) in form of a classical (Tarski style) model theory, adapted to the specific requirements of Xcerpt’s constructs (e.g. the various aspects of incompleteness in query terms, grouping constructs in rule heads, etc.). Most importantly, the model theory uses term simulation as a replacement for term equality to handle incomplete term specifications, and an extended notion of substitutions in order to properly convey the semantics of grouping constructs. Based upon this model theory, a fixpoint semantics is also described, leading to a first notion of forward chaining evaluation of Xcerpt program

    Characterising Probabilistic Processes Logically

    Full text link
    In this paper we work on (bi)simulation semantics of processes that exhibit both nondeterministic and probabilistic behaviour. We propose a probabilistic extension of the modal mu-calculus and show how to derive characteristic formulae for various simulation-like preorders over finite-state processes without divergence. In addition, we show that even without the fixpoint operators this probabilistic mu-calculus can be used to characterise these behavioural relations in the sense that two states are equivalent if and only if they satisfy the same set of formulae.Comment: 18 page

    Expressiveness and Completeness in Abstraction

    Full text link
    We study two notions of expressiveness, which have appeared in abstraction theory for model checking, and find them incomparable in general. In particular, we show that according to the most widely used notion, the class of Kripke Modal Transition Systems is strictly less expressive than the class of Generalised Kripke Modal Transition Systems (a generalised variant of Kripke Modal Transition Systems equipped with hypertransitions). Furthermore, we investigate the ability of an abstraction framework to prove a formula with a finite abstract model, a property known as completeness. We address the issue of completeness from a general perspective: the way it depends on certain abstraction parameters, as well as its relationship with expressiveness.Comment: In Proceedings EXPRESS/SOS 2012, arXiv:1208.244

    A Faithful Semantics for Generalised Symbolic Trajectory Evaluation

    Full text link
    Generalised Symbolic Trajectory Evaluation (GSTE) is a high-capacity formal verification technique for hardware. GSTE uses abstraction, meaning that details of the circuit behaviour are removed from the circuit model. A semantics for GSTE can be used to predict and understand why certain circuit properties can or cannot be proven by GSTE. Several semantics have been described for GSTE. These semantics, however, are not faithful to the proving power of GSTE-algorithms, that is, the GSTE-algorithms are incomplete with respect to the semantics. The abstraction used in GSTE makes it hard to understand why a specific property can, or cannot, be proven by GSTE. The semantics mentioned above cannot help the user in doing so. The contribution of this paper is a faithful semantics for GSTE. That is, we give a simple formal theory that deems a property to be true if-and-only-if the property can be proven by a GSTE-model checker. We prove that the GSTE algorithm is sound and complete with respect to this semantics

    Mechanized semantics

    Get PDF
    The goal of this lecture is to show how modern theorem provers---in this case, the Coq proof assistant---can be used to mechanize the specification of programming languages and their semantics, and to reason over individual programs and over generic program transformations, as typically found in compilers. The topics covered include: operational semantics (small-step, big-step, definitional interpreters); a simple form of denotational semantics; axiomatic semantics and Hoare logic; generation of verification conditions, with application to program proof; compilation to virtual machine code and its proof of correctness; an example of an optimizing program transformation (dead code elimination) and its proof of correctness
    • …
    corecore