

 University of Groningen

Fixpoint semantics and simulation
Hesselink, Wim H.; Thijs, Albert

Published in:
Theoretical Computer Science

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2000

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Hesselink, W. H., & Thijs, A. (2000). Fixpoint semantics and simulation. Theoretical Computer Science,
238(1-2), 275-311.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 01-02-2024

https://research.rug.nl/en/publications/75ce4b09-7b92-402e-9b41-5abafd228fef

Theoretical Computer Science 238 (2000) 275–311
www.elsevier.com/locate/tcs

Fixpoint semantics and simulation

Wim H. Hesselink ∗, Albert Thijs
Department of Mathematics and Computing Science, Rijksuniversiteit Groningen, Postbox 800,

9700 AV Groningen, The Netherlands

Received August 1997; revised February 1998
Communicated by J.W. de Bakker

Abstract

A general functorial framework for recursive de�nitions is presented in which simulation of
a de�nition scheme by another one implies an ordering between the values de�ned by these
schemes in an arbitrary model. Under mild conditions on the functor involved, the converse
implication also holds: a model is constructed such that, if the values de�ned are ordered, there is
a simulation between the de�nition schemes. The theory is illustrated by applications to context-
free grammars, recursive procedures in imperative languages, and simulation and bisimulation of
processes. c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Simulation; Fixpoint semantics; Recursion; Model

1. Introduction

The ideas we present here, came up in the search for rules to prove re�nement and
equivalence between recursive procedures in imperative programming languages, cf.
[6]. In such a language, one may consider two procedures, p0 and p1, both de�ned
by mutual recursion, and ask whether p0 re�nes (i.e., implements) p1. One of the ways
to prove re�nement is to give a simulation relation between the recursion schemes of
p0 and p1 (a method akin to Hoare’s induction rule). This observation led us to the
question whether re�nement can always be proved by simulation. Of course, the answer
is negative since re�nement may be a consequence of speci�c properties of program
constructors like assignments and sequential composition. It turned out, however, that
the answer is positive if we want re�nement independent of the interpretation of the
program constructors and even independent of the domain of interpretation.

∗ Corresponding author.
E-mail address: wim@cs.rug.nl (W.H. Hesselink).

0304-3975/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(98)00176 -5

276 W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311

For the proof of this result it was convenient to take a number of abstraction steps,
via program schemes and polynomial functors, to almost arbitrary functors from sets
to sets.
Thus, the results we present are twofold. Firstly, soundness of inferring re�nement

from simulation in a very abstract setting for very arbitrary models, and secondly
completeness of this proof strategy if model assumptions are discarded.
As a consequence of the abstractions, the recursive procedures we began with have

been replaced by arbitrary de�nition schemes, and the re�nement relation is replaced
by an arbitrary partial order (which may be equality). The theory is applicable to many
classes of recursive de�nitions. Of course, in speci�c situations the soundness result
may turn out to be trivial, whereas the completeness result is irrelevant for speci�c
models. For example, in Moschovakis’ theory of functional recursion [10], the theory
trivializes: simulation is not much more than renaming of functions, and completeness is
irrelevant since the intended models satisfy speci�c laws not represented in our theory.
The theory is more fruitful in nondeterministic settings: we give examples with context-
free languages, recursive de�nitions in process algebras, and recursive procedures in
imperative languages.
Summarizing, the aim of this paper is to give a general framework with a sound and

complete rule (viz. simulation) to prove that one recursively de�ned value is greater
than another one, independent of the model in which these values are de�ned.

We now turn to a description of recursive de�nitions, and of the related concepts
of syntax and semantics, which culminates in a neat but abstract categorical setting.
A simple recursive de�nition de�nes a value in terms of itself. Strictly speaking, a
recursive de�nition is not a de�nition but a �xpoint equation, and the actual de�nition
amounts to the choice of the best solution of the equation in terms of a relevant order.
A general recursive de�nition de�nes a family of values in terms of itself (mutual
recursion), but its purpose usually is to de�ne a speci�c value. For example, in a
context-free grammar each nonterminal is provided with a set of productions, but we
are especially interested in the productions of the start symbol.
For the analysis of a recursive de�nition it is useful to distinguish the syntactic def-

inition scheme from the semantic interpretation. The de�nition scheme consists of an
index set D for the family that is to be de�ned, a function ’ that assigns to each index
an expression over D, and a special index d ∈ D to point at the value we are inter-
ested in. At the semantic side, we have a set A of values, a function � that evaluates
expressions over A to values in A, and an order to choose the best �xpoint.
For example, in the case of context-free grammars, D is the set of nonterminals,

function ’ provides the production rules, A is the set of languages, function � represents
concatenation and union of languages, the order is inclusion, and the least �xpoint
is the context-free language de�ned. For details, see Example 3 in Section 5.2. In
Example 4 of the same section, D is a set of mutually recursive procedures, ’ is
the declaration of the bodies of these procedures, A is the set of monotonic predicate
transformers, � provides operations for composition and nondeterministic choice, the

W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311 277

order is implication order, and the least �xpoint gives the weakest preconditions of the
procedures.
Back to the general setup. The shape of the expressions over A must be the same as

the shape of the expressions over D, since, for every “valuation” that assigns values
in A to elements of D, and for every expression over D, we need a corresponding
expression over A. This requirement is formalized in the condition that the set of
expressions over X depends functorially on X . We can then abstract from the syntax
of the expressions.
The theory therefore starts with the choice of a functor F from sets to sets. A scheme

is a triple (D;’; d) with D a set, ’ a function from D to F:D, and d an element of
D. A model is a triple (A; �;6) with A a set, � a function from F:A to A, and 6 an
order on A, which has to satisfy some compatibility with F and �. We often use d as
an abbreviation of (D;’; d) and A as an abbreviation of (A; �;6). The meaning <d= of
a scheme d in a model A will be de�ned as f:d where f is the least function f from
D to A with � ◦ F:f ◦’ = f (which is a hylomorphism in the sense of [8]).

D
’−−−−−→ F:D

f

y

y
F:f

A
�←−−−−− F:A

The equality problem is the question whether two recursive de�nitions, i.e., schemes
d and e, de�ne the same values <d= = <e=. Since model A has an order, we are even more
interested in the ordering problem, whether <d=6 <e=: The answers to these questions
may depend on the model and then domain speci�c methods are needed to answer them.
This paper is devoted to the case that equality or order can be asserted uniformly, for
a large class of models.
The key concept is that of simulation, a functorial generalization of concepts intro-

duced by Milner [9] and Park [11]. For the de�nition of simulation we have to extend
the functor F to binary relations between sets. It turns out that almost all important
functors have at least one such relational extension. In cases with nondeterminacy like
grammars and transition systems, there are usually two or three relevant relational
extensions, which behave di�erently.
Our �rst main result is soundness of simulation: if d and e are schemes with a simu-

lation from d to e, then <d=6 <e= in every well-behaved model in which d has meaning
<d= and e has meaning <e=. Here the term “well-behaved” has a precise de�nition,
independent of d and e.
Our second main result is completeness in the sense that existence of a simulation

follows from the assumption that <d=6 <e= holds in every well-behaved model.
Actually, we give a stronger completeness result. Let a model be called universal,

if every scheme d has a meaning <d= in it, and if <d=6 <e= in it is equivalent to
the existence of a simulation from d to e. We show that a universal model exists
if, loosely speaking, the nondeterminacy is bounded by some cardinal number. Since

278 W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311

cardinal numbers can be in�nite and arbitrarily large, it follows that, if a universal
model does not exist, that is due to the limitations of ZF set theory.

The paper is organized as follows. In each section the results are numbered consec-
utively. When referring to a result from another section we add the section number to
it. In Section 2 we deal with notations and some basic category theory (only functors).
In Section 3, we present the �rst part of the theory and we conclude with the

soundness of simulation. In Section 4 we show that the functor and its relational
extension together are equivalent to a functor from sets to preordered sets, which
setting is more convenient for the actual constructions.
Section 5 contains the constructions of many functors with relational extensions.

Here we give a number of examples and counterexamples. In particular, we show how
the theory applies to context-free languages and to recursive procedures in imperative
programming. We also show that the simulations form a generalization of Park’s con-
cept of bisimulation of processes, and that another relational extension induces another
equivalence relation on processes.
In Section 6, we construct a univeral model and prove that an inequality <d=6 <e= in

this model implies the existence of a simulation from d to e. We provide an example
to show that the universal model need not be the �nal coalgebra of [7, 12]. Section 7
contains the conclusion and some directions for future research.
This paper is based on the �rst part of [14]. The functorial approach is related to

the one of [7, 12], but we replace the interest in initial algebras and �nal coalgebras
by an emphasis on the interpretation of a coalgebra in an ordered algebra.

2. Notations and basic facts

We use ordinary ZF set theory, including the axiom of choice, cf. [13]. The set
of functions from a set X to a set Y is denoted by X → Y . Function application
is denoted by a left-associative in�x dot, composition of functions by the operator ◦.
The identity function of X is denoted by 1X . A functor F :Set→ Set is a function
that assigns to every set X a set F:X , and to every function f ∈ X → Y a function
F:f ∈ F:X → F:Y , such that

F:1X = 1F:X ;

F:(f ◦ g) = F:f ◦ F:g for all g ∈ X → Y and f ∈ Y → Z:

Lemma 0. Every functor Set→ Set preserves surjective functions and bijective func-
tions.

Proof. Let F be such a functor. Let f ∈ A → B be a surjective function. By the
axiom of choice there is a function g ∈ B→ A with f ◦ g = 1B. Then F:f ◦F:g = 1F:B
and therefore F:f is surjective. If f is bijective we also have g ◦ f = 1A and hence
F:g ◦ F:f = 1F:A; so that F:f is bijective.

W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311 279

A relation R between sets A and B is a subset R⊆A× B. Its converse cv:R⊆B× A
consists of the pairs (y; x) with (x; y) ∈ R. A relation R is predominantly treated as
an in�x operator. We then write x 〈R〉y for (x; y) ∈ R. The composition R ◦ S ⊆A×C
of relations R⊆A× B and S ⊆B× C consists of the pairs (x; z) such that x 〈R〉y and
y 〈S〉 z for some y ∈ B.
We write =A to denote the identity relation of A. A relation R⊆A × A is called

a preorder i� (=A)⊆R and R ◦ R⊆R. It is called an order i� moreover R ∩ cv:R =
(=A) (so we omit the word “partial”). The identity relation =A is also called the
discrete preorder on A.
For a relation R⊆A×B and functions f ∈ X → A and g ∈ X → B, we also use the

lifted relation R given by f 〈R〉 g ≡ (∀x :: f:x 〈R〉 g:x). If A and B are equipped with
preorders 6, function f ∈ A→ B is said to be monotonic i� f:x6f:y in B whenever
x6y in A. We write Prs to denote the category of preordered sets with monotonic
functions. Therefore, a functor F :Set→ Prs is a functor Set→ Set that additionally
provides each set F:X with a preorder 6F:X such that every function F:f is monotonic.
We write (∀x :P :Q) to mean that Q holds for all x for which P holds. Similarly,

(∃x :P :Q) means that Q holds for some x for which P holds. In both cases, the range
predicate P may be omitted if it is identical to true. So we have (∀x :P :Q) ≡ (∀x ::
P ⇒ Q), and (∃x :P :Q) ≡ (∃x :: P ∧ Q), and ¬(∀x :P :Q) ≡ (∃x :P :¬Q). Here we
have assumed that the type of x is self-evident. If that is not the case, the binding
occurrence of x is written x ∈ X . We use similar notations for the quantor inf for
in�mum (greatest lower bound) and for � (functional abstraction).

3. The abstract theory

Given a functor F :Set→ Set, we de�ne in Section 3.1 the concept of relational
extension. This is done axiomatically. The important concepts coalgebra, algebra, in-
terpretation, model, pre-interpretation, post-interpretation, meaning, scheme, and re�ne-
ment are all de�ned in Section 3.2. In Section 3.3, simulations are introduced. There
we also de�ne completeness and atness of models, and we prove the technical lemmas
for soundness. The soundness theorem itself is proved in Section 3.4. As preparations
for the completeness results we there also give the de�nitions of universal models and
separating models.

3.1. Relational extension

For relations R⊆A × B and T ⊆A′ × B′, we de�ne the relation R→→T between
A→ A′ and B→ B′ by

(f; g) ∈ R→→T ≡ (∀x; y : x〈R〉y :f:x 〈T 〉 g:y):

Note that this says that the product function f × g ∈ A × B → A′ × B′ restricts to a
function R→ T .

280 W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311

Let F be a functor Set→ Set. We de�ne a relational extension of F to be a function
G that assigns to every pair of sets A; B; and relation R⊆A×B, a relation G:R⊆F:A×
F:B such that

(rel0) (=F:A)⊆G:(=A);
(rel1) R⊆ S ⊆A× B ⇒ G:R⊆G:S,
(rel2) R⊆A× B ∧ S ⊆B× C ⇒ G:R ◦ G:S = G:(R ◦ S),
(rel3) (f; g) ∈ R→→T ⇒ (F:f; F:g) ∈ G:R→→G:T .

These particular conditions are proof-generated: they are precisely what we need in the
theory below. Yet, they are canonical to some extent: in Section 4 below, we show that
relational extensions correspond to “interpolating” functors from sets to preordered sets.
In Section 5 we show that many important functors have useful relational extensions.
In [14], the term relator is used instead of relational extension. Here, we abandon the
term relator to avoid confusion with the term used in [2].
In the following we �x a functor F and a relational extension G of F .
If R is a preorder on a set A, then G:R is a preorder on F:A. In fact. G:R is

reexive because of (=F:A)⊆G:(=A)⊆G:R. It is transitive because of G:R ◦ G:R =
G(R ◦ R)⊆G:R.

Lemma 0. If a function f ∈ A → B is monotonic with respect to preorders 6A on
A and 6B on B; then the function F:f ∈ F:A → F:B is monotonic with respect to
the preorders G:(6A) on F.A and G:(6B) on F.B.

Proof. Since monotonicity of f is the same as (f;f) ∈ (6A)→→ (6B), this follows
from (rel3).

A relation R⊆A × B can also be treated as a set with two projection functions
�0 ∈ R→ A and �1 ∈ R→ B. Then we have (obviously):

x 〈R 〉y ≡ (∃z ∈ R :: x〈=A〉�0:z ∧ �1:z〈=B〉y):

The next lemma describes a similar relationship between the set F:R and the relation
G:R.

Lemma 1. Let R⊆A× B; x ∈ F:A and y ∈ F:B. Then

x 〈G:R 〉y ≡ (∃z ∈ F:R :: x〈G:(=A)〉F:�0:z ∧ F:�1:z〈G:(=B)〉y):

Proof. (⇒) We de�ne the relations S ⊆A × R and T ⊆R × B to consist of all pairs
(a; (a; b)) and ((a; b); b), respectively, where (a; b) ranges over R. We then have S◦T =
R. Therefore, (rel2) implies G:S ◦ G:T = G:R.
Now let x〈G:R〉y. Then there exists z ∈ F:R such that x〈G:S〉z and z〈G:T 〉y. We

observe that (1A; �0) ∈ S→→(=A): By (rel3), it follows that (1F:A; F:�0) ∈ G:S→→G:(=A):

W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311 281

Since x〈G:S〉z, it follows that x〈G:(=A)〉F:�0:z: Similarly, (�1; 1B) ∈ T→→ (=B), and
hence (F:�1; 1F:B) ∈ G:T→→G:(=B), and hence F:�1:z 〈G:(=B)〉y.
(⇐). Let z ∈ F:R be a witness for the righthand side. It is clear that (�0; �1) ∈

(=R)→→R. Therefore, F:�0:z〈G:R〉F:�1:z by (rel0) and (rel3). Since (=A) ◦ R ◦ (=B) =
R, the righthand side implies x 〈G:R〉y by (rel2).

Remark. Let the relational extension G be called symmetric i� G:(=A) is symmetric
for all sets A. Using Lemma 1, one can deduce from this that G:(cv:R) = cv:(G:R) for
all relations R. We leave this result as an aside, since the theory seems to be more
fruitful in the cases where G is not symmetric.

3.2. Coalgeberas, algebras, and interpretations

We de�ne an F-coalgebra to be a pair (D;’) where ’ ∈ D → F:D. We de�ne an
F-algebra to be a pair (A; �) where � ∈ F:A→ A. See [12] for both de�nitions.
We de�ne an interpretation of a coalgebra (D;’) in an algebra (A; �) to be a

function f ∈ D→ A such that � ◦ F:f ◦ ’ = f. The reason for this de�nition is that
we regard ’ as a recursive de�nition of the elements d of D by expressions ’:d. The
requirement then expresses that each value f:d satis�es its recursive de�nition when
the expressions over A are evaluated by means of �.
So, an interpretation is a �xpoint of the function P’ from D → A to itself that is

de�ned by P’:f = � ◦ F:f ◦ ’. We omit the parameter � in the notation of P’ since
we often consider interpretations of di�erent coalgebras in the same algebra (A; �). In
order to guide our choice of the most adequate �xpoint we introduce a (pre-)order on
the algebra A, in the following way.
A G-premodel is an algebra (A; �) with a preorder 6 on A, such that the function

� ∈ F:A→ A is monotonic with respct to the preorders G:(6) and 6 on F:A and A,
respectively. The premodel is called a model i�, moreover, the preorder 6 is an order
on A. Note that G:(6) need not be an order on F:A.
For an F-coalgebra (D;’) and a G-premodel A, we de�ne a function f ∈ D → A

to be a pre-interpretation i� f is a pre-�xpoint of P’, i.e., i� P’:f6f for the lifted
preorder on D→ A. Similarly, f is called a post-interpretation i� f is a post-�xpoint,
i.e., f6P’:f: Since there is a good �xpoint theory for monotonic functions, we observe

Lemma 2. Let (D;’) be an F-coalgebra and let (A; �;6) be a G-premodel. Then P’

from D→ A to itself is monotonic.

Proof. It su�ces to verify that, for functions f; g ∈ D→ A:

P’:f6P’:g

≡ {de�nition of P’}

� ◦ F:f ◦ ’6� ◦ F:g ◦ ’

282 W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311

⇐ {� is monotonic from (F:A; G:(6)) to (A;6)}

F:f〈G:(6)〉 F:g

⇐ {see below}

f6g:

Here, the last step follows from (rel3) with R = (=D) and T = (6), together with
(rel0) to prove (=F:D)⊆G:R.

Remark. Here we prove f6g⇒ P’:f6P’:g by means of a sequence of implications
and equivalences with hints between braces. This linear proof format is due to Feijen,
see [4, 6].

For an F-coalgebra (D;’) and a G-model (A; �;6), we de�ne the meaning �’ to
be the in�mum (greatest lower bound) of all pre-interpretations, if that in�mum exists.
We say that the coalgebra (D;’) has meaning in the G-model A i� �’ is wellde�ned.
Note that we do not impose completeness requirements on the G-model A.

Lemma 3. If it is de�ned; the meaning �’ is the least interpretation.

Proof. Since every interpretation is a pre-interpretation and �’ is the in�mum of the
pre-interpretations, it su�ces to prove that �’ is an interpretation:

�’ = P’:�’

≡ {A is a G-model}

�’6P’:�’ ∧ P’:�’6�’

⇐ {de�nition of �’}

P’:(P’:�’)6P’:�’ ∧ P’:�’6�’

≡ {P’ is monotonic}

P’:�’6�’

≡ {de�nition of �’}

(∀f :P’:f6f :P’:�’6f)

⇐ {transitivity of 6}

(∀f :P’:f6f :P’:�’6P’:f)

W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311 283

⇐ {P’ is monotonic}

(∀f :P’:f6f : �’6f)

≡ {de�nition of �’}

true:

Remark. Here we prove �’ = P’:�’; since we give a linear proof that the formula
follows from true.

We de�ne an F-scheme to be a triple (D;’; d) such that (D;’) is an F-coalgebra
and d ∈ D. We speak of scheme d as an abbreviation of (D;’; d). The meaning of
scheme d in a G-model A is de�ned as <d= = �’:d whenever the coalgebra (D;’) has
a meaning �’ in A.
Let (D;’; d) and (E; ; e) be F-schemes. We say that (D;’; d) re�nes (E; ; e) in

the G-model A i� both coalgebras have a meaning in A and are such that �’:d6� :e
in A. This is denoted by

A |= (D;’; d) v (E; ; e):

The purpose of this paper is to derive a sound and complete proof rule for re�nement.
This rule will be based on simulation, as introduced in the next section.

Example 0. Let n be a natural number. Consider the functor F given by F:X = X n (the
set of the n-tuples), with the natural action on functions. For every relation R⊆A×B,
let G:R be the lifted relation. Then G is easily seen to be a relational extension of F .
In this case, a G-model is a triple (A; �;6) such that 6 is an order on A and that
� ∈ An → A is monotonic. If we take n = 3; we have, for example, the systems of
recursive equations
(i) x = �:(x; x; x);
(ii) y = �:(y; z; z) ∧ z = �:(z; y; z).
If we represent the variables x; y; z; by the numbers 0, 1, 2, respectively, the systems
(i) and (ii) correspond to the F-coalgebras (D;’) and (E;) given by

D = {0}; ’:0 = (0; 0; 0);

E = {1; 2}; :1 = (1; 2; 2) ∧ :2 = (2; 1; 2):

The meaning of the coalgebra (D;’) is the least solution of (i), and the meaning of
(E;) is the least solution of (ii). Let us assume that A is complete (every subset has
an in�mum). Then both systems have least solutions. Since every solution of (i) gives
a solution of (ii) by y; z := x; x; we then have

A |= (E; ; 1) v (D;’; 0):

284 W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311

The converse relation also holds, but the proof of that fact will be a good illustration
of a result in the next section. Indeed we shall prove that, for this functor, all systems
of recursive equations de�ne the same value.

3.3. Simulation

A G-simulation between a coalgebra (D;’) and a coalgebra (E;) is de�ned to be
a relation R⊆D × E such that (’;) ∈ R→→G:R, i.e., for all x ∈ D and y ∈ E:

x 〈R〉y ⇒ ’:x 〈G:R 〉 :y:

We �rst prove that the G-simulations form a category in the sense that identity relations
are simulations and that any composition of simulations is a simulation. In fact, the
identity relation =D is a G-simulation from (D;’) to itself because of (rel0). If R and
S are G-simulations from (D;’) to (E;) and from (E;) to (H; �), then R ◦ S is a
G-simulation from (D;’) to (H; �), because of

x 〈R ◦ S 〉 z

⇒ (∃y :: x 〈R 〉y ∧ y 〈 S 〉 z)

⇒ (∃y :: ’:x 〈G:R 〉 :y ∧ :y 〈G:S 〉 �:z)

⇒ ’:x 〈G:R ◦G:S 〉 �:z

⇒ { (rel2) }

’:x 〈G:(R ◦ S) 〉 �:z:
We say that R is a G-simulation of schemes from (D;’; d) to (E; ; e) i� R is a
G-simulation of coalgebras from (D;’) to (E;) that contains the pair (d; e).

Remark. If the relational extension G is symmetric, every G-simulation R from a
scheme d to a scheme e induces a G-simulation cv:R from e to d.

We now prepare the ground for the main soundness result, which is Theorem 7
below. In Lemma 4, we show that simulation between schemes implies ordering be-
tween the values de�ned (i.e., the least �xpoints), if the order of model A is “complete
enough”. In Lemma 6, we show that a similar assertion holds for another class of
models, which are called at.
The cardinality of a set X is denoted by #X . Let be a cardinal number. A pre-

ordered set (A;6) is said to be -complete i� (A;6) is ordered and every subset
U ⊆A with cardinality #U6 has an in�mum.

Lemma 4. Let (A; �) be a G-model such that the coalgebra (D;’) has a meaning �’
in A. Let g ∈ E → A be an interpretation of a coalgebra (E;) in A. Assume that

W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311 285

A is #E-complete. Let R be a G-simulation of schemes from (D;’; d) to (E; ; e).
Then �’:d6g:e.

Proof. Since A is #E-complete, we can de�ne a function f ∈ D→ A by

f:x = (inf y ∈ E : x 〈R 〉y : g:y):
Then we have f:x6g:y for all pairs x; y with x 〈R 〉y. This implies (f; g) ∈ R→→ (6).
Since R is a simulation of schemes, we have d 〈R 〉 e, and hence f:d6g:e. Therefore,
it su�ces to prove that �’6f. This is proved in

�’6f

⇐ {de�nition of �’}

P’:f6f

≡ {de�nition of f}

(∀x; y : x 〈R 〉y :P’:f:x6g:y)

≡ {de�nition of →→ }

(P’:f; g) ∈ R→→ (6)

≡ {g is an interpretation, de�nition of P’ and P }

(� ◦ F:f ◦ ’; � ◦ F:g ◦) ∈ R→→ (6)

⇐ {A is a G -model : (�; �) ∈ G:(6)→→ (6)}

(F:f ◦’; F:g ◦) ∈ R→→G:(6)

⇐ {R is a G -simulation : (’;) ∈ R→→G:R}

(F:f; F:g) ∈ G:R→→G:(6)

⇐ {(re13)}

(f; g) ∈ R→→ (6)

≡ {see above}

true:

Example 1. We come back to Example 0 with F:X = X n for a �xed number n, with
its induced relational extension G. Let (D;’; d) and (E; ; e) be arbitrary F-schemes.
Let > be the trivial relation such that x 〈> 〉y holds for all x ∈ D and y ∈ E. It is

286 W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311

easy to verify that > is a simulation relation between the schemes, and that cv:> is a
simulation in the other direction.
Assume that (A; �;6) is a complete G-model, so that the schemes have meaning

�’:d and � :e in A. Since 6 is an order, the Lemmas 3 and 4 imply that �’:d = � :e.
So, in this case, completeness of the model implies that all schemes de�ne the same
value, which is the least solution of the analogue of system (i) of Example 0.

The next result is a technical lemma to prepare the proof of Lemma 6.

Lemma 5. Let (E;) be a coalgebra with an interpretation g ∈ E → A in a G-
premodel (A; �;6). Let (D;’) be a coalgebra and let r ∈ D→ E.
(a) If F:r ◦’ 〈G:(=E) 〉 ◦ r in D→ F:E; then g ◦ r is a pre-interpretation of D.
(b) If ◦ r 〈G:(=E) 〉F:r ◦’ in D→ F:E; then g ◦ r is a post-interpretation of D.

Proof. (a)

P’:(g ◦ r)6g ◦ r

≡ {g is an interpretation}

P’:(g ◦ r)6P :g ◦ r

≡ {de�nition of P}

� ◦F:(g ◦ r) ◦’6� ◦F:g ◦ ◦ r

⇐ {A is a G -premodel}

F:g ◦F:r ◦’ 〈G:(6) 〉F:g ◦ ◦ r

⇐ {Lemma 0 with g ∈ (E;=E)→ (A;6) for f ∈ A→ B}

F:r ◦’ 〈G:(=E) 〉 ◦ r:

The proof of (b) is obtained by interchanging the sides of the inequations.

We de�ne a G-premodel (A; �;6) to be at i� f6g holds for every coalgebra
(D;’), every post-interpretation f ∈ D→ A, and every pre-interpretation g ∈ D→ A.
Notice that, if A is a at G-model and f is an interpretation of a coalgebra (D;’)

in A, then f is the only interpretation of (D;’) in A, and (D;’) has meaning �’ = f
in A.

Lemma 6. Let (D;’) and (E;) be F-coalgebras with interpretations f ∈ D → A
and g ∈ E → A in a at G-premodel A. Let R be a G-simulation of schemes from
(D;’; d) to (E; ; e). Then f:d6g:e.

W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311 287

Proof. Since R is a G-simulation, it follows from Lemma 1 that, for every pair x 〈R 〉y,
there exists an element z ∈ F:R such that

’:x 〈G:(=D) 〉F:�0:z ∧ F:�1:z 〈G:(=E) 〉 :y:

By the axiom of choice, it then follows that there is a function � ∈ R→ F:R such that

(∗) ’ ◦ �0 〈G:(=D) 〉F:�0 ◦ � ∧ F:�1 ◦ � 〈G:(=E) 〉 ◦ �1.
Now, (R; �) is a coalgebra. It follows from the left-hand conjunct of (∗) and Lemma
5(b) that f ◦ �0 is a post-interpretation of (R; �). It follows from the other conjunct of
(∗) and Lemma 5(a) that g ◦ �1 is a pre-interpretation of (R; �). Flatness of A therefore
implies that f ◦ �06g ◦ �1. This proves that f:x6g:y for all x 〈R 〉y.

3.4. Simulation and re�nement

We can now formulate and prove our main soundness result, which is that simulation
implies re�nement.
To abstract from the speci�c simulation relation, we de�ne the relation �G between

schemes by saying that (D;’; d) �G (E; ; e) holds i� there is a G-simulation of
schemes R from (D;’; d) to (E; ; e). Since the F-schemes with as morphisms the G-
simulations between them form a category, relation �G is a preorder (consequently,
if G is symmetric, �G is an equivalence relation).

Theorem 7. Let (D;’; d) and (E; ; e) be F-schemes with (D;’; d)�G (E; ; e). For
every G-model (A; �;6) in which both coalgebras have meaning; and which is #E-
complete or at; we have

A |= (D;’; d) v (E; ; e):

Proof. By assumption, there is a G-simulation R from (D;’; d) to (E; ; e) and we
have interpretations �’ and � of (D;’) and (E;), respectively. By Lemmas 4 and
6, it follows that �’:d6� :e:

Theorem 7 says that simulation implies re�nement for a certain class of models. In
Example 1 of Section 5.1 below, we show that some assumption on the models is
necessary for the validity of this implication, and in the remainder of Section 5 we
give a number of examples where the implication applies.
Theorem 7 may be regarded as saying that a certain proof rule is sound. This sug-

gested the question whether it could be complete as well. Now completeness amounts
to replacing the proof rule by an equivalence of the form

(D;’; d)�G (E; ; e) ≡ (∀A :: A |= (D;’; d) v (E; ; e));

where A ranges over some class of models. We aim, however, at the strongest possible
result, viz., that one model is enough.

288 W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311

Therefore, we de�ne G-model A to be universal i� for all F-schemes:

(D;’; d)�G (E; ; e) ≡ A |= (D;’; d) v (E; ; e):

Since (�G) is reexive, a necessary condition for a universal G-model is that every
coalgebra has meaning in it.
For the converse implication, we de�ne a G-premodel (A; �;6) to be separating i�

for every pair of F-schemes (D;’; d) and (E; ; e) and every pre-interpretation f ∈
D→ A and post-interpretation g ∈ E → A with f:d6g:e, we have (D;’; d)�G (E; ; e).
It is easy to verify that a at and separating G-model in which every coalgebra has

meaning is universal. In Section 6.4 we use this observation to prove that, for some
functors, universal models do exist.

4. Interpolating functors

In the theory of Section 3 we used a relational extension of a given functor from Set
to itself. It turns out that in practice the relational extension together with the functor are
always given by one functor Set→ Prs, which has the so-called interpolation property.
In this section we develop the relevant theory. It is a preparation for Section 5, where
a number of examples of the theory are presented.

4.1. The construction of relational extensions

It follows from Lemma 3.1 that the relational extension G is uniquely determined
by the functor F and the relations G:(=A) in the sets F:A. The relations G:(=A) are
preorders and Lemma 3.0 implies that all functions F:f ∈ F:A → F:B are monotonic
with respect to them. So we can form the functor FG :Set→ Prs which assigns to
every set A the preordered set (A;G:(=A)) and which acts on functions as F does.
Then G is completely determined by FG.
Conversely, let K be a functor Set→ Prs. Then we can use the analogue of Lemma

3.1 to de�ne a prescription K+, that assigns to every relation R⊆A × B the relation
K+:R⊆K: A× K:B given by

x 〈K+:R 〉y ≡ (∃u ∈ K:R :: x6K:�0:u ∧ K:�1:u6y);

where �0 ∈ R → A and �1 ∈ R → B are the canonical projections and 6 denotes the
preorders of K:A and K:B.

Lemma 0. The prescription K+ satis�es condition (rel0), (rel1), and (rel3) of a re-
lational extension.

Proof. (rel0) For R = (=A), the projections �0 and �1 are equal, and they are bijec-
tions. Using Lemma 2.0, it follows that

x 〈K+:(=A) 〉y ≡ x6K:Ay:

Since 6K:A is reexive, (rel0) holds.

W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311 289

(rel1) Let R⊆ S ⊆A × B. De�ne j ∈ R → S to be the injection function. Let
�0 ∈ S → A and �1 ∈ S → B be the projections. We have �i = �i ◦ j. We prove
K+:R⊆K+:S in

x 〈K+:R 〉y

≡ {de�nition of K+}

(∃u ∈ K:R :: x6K:�0:u ∧ K:�1:u6y)

≡ {�i = �i ◦ j}

(∃u ∈ K:R :: x6K:�0:(K:j:u) ∧ K:�1:(K:j:u)6y)

⇒ {take v = K:j:u}

(∃v ∈ K:S :: x6K:�0:v ∧ K:�1:v6y)

≡ {de�nition of K+}

x 〈K+:S 〉y:

(rel3) Consider (f; g) ∈ R→→T . Let �′
i be the canonical projections of T . The restriction

of (f; g) yields a function j ∈ R → T with f ◦ �0 = �′
0 ◦ j and g ◦ �1 = �′

1 ◦ j. We
prove (K:f; K:g) ∈ K+:R→→K+:T by observing that, for every x ∈ K:A and y ∈ K:B,

K:f:x 〈K+:T 〉K:g:y

≡ {de�nition of K+}

(∃v ∈ K:T :: K:f:x6K:�′
0:v ∧ K:�′

1:v6K:g:y)

⇐ {take v = K:j:u and use �′
i ◦ j = f ◦ �i}

(∃u ∈ K:R :: K:f:x6K:f:(K:�0:u) ∧ K:g:(K:�1:u)6K:g:y)

⇐ {K:f and K:g are monotonic}

(∃u ∈ K:R :: x6K:�0:u ∧ K:�1:u6y)

≡ {de�nition of K+}

x 〈K+:R 〉y:

In Lemma 0, condition (rel2) is still missing. In the next section we give a condition
on K that implies that K+ is a relational extension. In Section 4.3, we show that every
extension can be constructed in this way.

290 W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311

4.2. Weak pullbacks and interpolation

Let functions f ∈ B → A; g ∈ C → A; h ∈ X → B, and k ∈ X → C be such that
f ◦ h = g ◦ k: These functions then form a so-called commuting diagram.

X
h↙ ↘ k
B C
f↘ ↙g

A

The diagram is called a weak pullback diagram i�, for every pair b ∈ B; c ∈ C with
f:b = g:c, there is an element x ∈ X with h:x = b and k:x = c: The diagram is called
a pullback diagram i�, moreover, the element x is always unique. For every diagram
as above, there is a canonical function from X to the subset of B × C of the pairs
(b; c) with f:b = g:c. The diagram is a (weak) pullback i� this function is bijective
(surjective).
Now let the sets A; B; C; X be preordered and let the functions f; g; h; k be mono-

tonic. We de�ne the diagram to be an interpolation diagram i�, for every pair b ∈
B; c ∈ C with f:b6g:c there exists an element x ∈ X with b6h:x and k:x6c.
Note that, if the preorders on A; B; C are discrete, the diagram is an interpolation

diagram if and only if it is a weak pullback.
A functor K :Set→ Prs is said to be interpolating i� it transforms every pullback

diagram into an interpolation diagram.

Theorem 1. Let K :Set→ Prs be an interpolating functor. Then K+ is a relational
extension of K .

Proof. By Lemma 0, it remains to verify (rel2). Let relations R⊆A×B and S ⊆B×C
be given. In order to relate the composition R ◦ S to R and S, we de�ne the ternary
relation T ⊆A× B× C to consist of the triples (a; b; c) with (a; b) ∈ R and (b; c) ∈ S.
Let the functions ∈ T → R ◦ S and 0 ∈ T → R and 1 ∈ T → S be de�ned by

 :(a; b; c) = (a; c) ∧ 0:(a; b; c) = (a; b) ∧ 1(a; b; c) = (b; c):

Then is surjective. therefore, K: is surjective by Lemma 2.0.
We use �0 and �1 to denote the two canonical projections for each of the three

binary relations R; S; R ◦ S. The four functions 0 ∈ T → R; 1 ∈ T → S; �1 ∈ R →
B; �0 ∈ S → B form a pullback diagram: for every pair of pairs (a; b) ∈ R; (p; q) ∈ S
with b = p there is a unique triple (x; y; z) ∈ T with (x; y) = (a; b) and (y; z) = (p; q).
Since functor K is interpolating, this implies that, for every u ∈ K:R and v ∈ K:S,

K:�1:u6K:�0:v ⇒ (∃t ∈ K:T :: u6K: 0:t ∧ K: 1:t6v):

W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311 291

By monotonicity of K:�0 and K:�1 and the equality �1 ◦ 0 = �0 ◦ 1, we even have
the equivalence

(∗) K:�1:u6K:�0:v ≡ (∃t ∈ K:T :: u6K: 0:t ∧ K: 1:t6v):

The equality K+:R ◦K+:S = K+:(R ◦ S) is proved by observing that for every pair x; y:

x 〈K+:R ◦K+:S 〉y

≡ {composition}

(∃z ∈ K:B :: x 〈K+:R 〉 z ∧ z 〈K+:S 〉y)

≡ {de�nition K+}

(∃z ∈ K:B; u ∈ K:R; v ∈ K:S :: x6K:�0:u ∧ K:�1:u6z

∧ z6K:�0:v ∧ K:�1:v6y)

≡ {transitivity, good choice for z}

(∃u ∈ K:R; v ∈ K:S; :: x6K:�0:u ∧ K:�1:u6K:�0:v ∧ K:�1:v6y)

≡ {use (∗)}

(∃u ∈ K:R; v ∈ K:S; t ∈ K:T :: x6K:�0:u

∧ u6K: 0:t ∧ K: 1:t6v ∧ K:�1:v6y)

≡ {calculus, choices of u and v}

(∃t ∈ K:T :: x6K:(�0 ◦ 0):t ∧ K:(�1 ◦ 1):t6y)

≡ {�0 ◦ 0 = �0 ◦ and �1 ◦ 1 = �1 ◦ }

(∃t ∈ K:T :: x6K:(�0 ◦):t ∧ K:(�1 ◦):t6y)

≡ {function K: is surjective}

(∃z ∈ K:(R ◦ S) :: x6K:�0:z ∧ K:�1:z6y)

≡ {de�nition K+}

x 〈K+:(R ◦ S) 〉y:

Remark. If functor K is not interpolating, the equivalence at (∗) can be replaced by
the symbol ⇐. So then we still have K+:(R ◦ S)⊆K+:R ◦K+:S:

292 W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311

Below we shall show that many functors Set→ Prs are interpolating. Not every such
functor, however, is interpolating. For example, let K be the functor that assigns to
every set X the set X with the preorder > such that x 〈> 〉y holds for all x; y ∈ X . To
show that K is not interpolating, we consider a pullback diagram that consists of two
disjoint nonempty subsets B and C of a set A, with the canonical injection functions
f and g; we take X = ∅ with injections h and k into B and C, respectively. This is
indeed a pullback diagram. It is easy to see that the K-image of the diagram is not an
interpolation diagram. The functor K clearly preserves pullbacks and weak pullbacks.
There also exist interpolating functors that do not preserve weak pullbacks. For

example, let S1 and S2 be sets with #S1 = 1 and #S2 ¿ 1. We give both sets the
preorder > introduced above. There is precisely one functor F :Set→ Prs such that
F:∅ = S2 and F:X = S1 for every nonempty X . This functor is interpolating but does
not preserve weak pullbacks (it also does not preserve injective functions, compare
Lemma 2.0).

4.3. Every extension comes from an interpolating functor

Theorem 1 shows that an interpolating functor Set→ Prs gives rise to a relational
extension. The converse is also true. So, we go back to the setting where G is a
relational extension of an arbitray functor F :Set→ Set. As indicated above, functor
F together with its extension G de�ne a functor FG :Set→ Prs. Below we show that
FG is interpolating. By Lemma 3.1, the relational extension (FG)+ is equal to G.
Therefore, the correspondence between interpolating functors and relational extensions
is bijective.
First, some convenient notation. For functions f ∈ X → A and g ∈ X → B, we

write [f; g] to denote the relation in A × B that consists of the pairs (f:x; g:x) with
x ∈ X . We clearly have (f; g) ∈ (=X)→→[f; g]. By (rel3) and (rel0) it follows that
(F:f; F :g) ∈ (=F:X)→→G:[f; g]. This implies

Lemma 2. [F:f; F:g]⊆G:[f; g]:

Now we can prove, as announced above:

Lemma 3. The functor FG is interpolating.

X
h↙ ↘ k
B C
f↘ ↙g

A

Proof. It su�ces to prove that FG transforms any weak pullback diagram into an
interpolation diagram. So, consider a weak pullback diagram as in Section 4.2. Let
b ∈ F:B and c ∈ F:C be such that F:f:b 〈G:(=A) 〉F:g:c. We now have to prove the
existence of x ∈ F:X with b 〈G:(=B) 〉F:h:x and F:k:x 〈G:(=C) 〉 c. Let R⊆B × C

W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311 293

consist of the pairs (p; q) with f:p = g:q. Since the diagram is a weak pullback
diagram, there is a surjective function m ∈ X → R with h = �0 ◦m and k = �1 ◦m. By
Lemma 2.0, function F:m is surjective. So, it su�ces to prove the existence of z ∈ F:R
with b 〈G:(=B) 〉F:�0:z and F:�1:z 〈G:(=C) 〉 c. By Lemma 3.1, it therefore remains to
prove b 〈G:R 〉 c. We now observe that

[1B; f] ◦ (=A) ◦ [g; 1C] = R;

and hence by (rel2) and Lemma 2,

[1F:B; F:f] ◦ G:(=A) ◦ [F:g; 1F:C]⊆G:R:

Therefore F:f:b 〈G:(=A) 〉F:g:c implies b 〈G:R 〉 c.

We have thus shown the converse of Theorem 1: if G is a relational extension
of an arbitrary functor F from sets to sets, there is an interpolating functor K from
sets to preordered sets such that G = K+. Since it is easier to construct interpolating
functors than relational extensions, we regard Theorem 1 as more important than its
converse.

4.4. Interpolating functors as a composition

The next results will be used to compute relational extensions and to construct models
for them. If K is an interpolating functor Set→ Prs we speak of a model for K where
a K+-model is meant. Implicitly, an arbitrary functor F :Set→ Set is also regarded
as a functor Set→ Prs, where every set F:X is provided with the discrete preorder
=F:X . Then functor F is interpolating if and only if it preserves weak pullbacks.

Remark. It follows from Lemma 2.0 that a functor that preserves pullback diagrams
also preserves weak pullback diagrams. Since preservation of weak pullbacks is the
weaker property, it is used as the hypothesis in the Lemmas 4 and 5 below. We use
these lemmas, however, only for functors that actually preserve pullbacks.

Lemma 4. Let H :Set→ Set be a functor that preserves weak pullback diagrams.
Then H is interpolating and hence has a relational extension H+. Let K :Set→ Prs
be an interpolating functor. Then K ◦H is interpolating and (K ◦H)+:R = K+:(H+:R)
for every relation R.

Proof. We need only prove the equality between the relations. Consider a relation
R⊆A×B. We use �0 ∈ R→ A; �1 ∈ R→ B; �0 ∈ H+:R→ H:A; �1 ∈ H+:R→ H:B to
denote the canonical projections. Since H:A and H:B have the discrete orders, relation
H+:R consists of the pairs (x; y) ∈ H:A × H:B such that there exists u ∈ H:R with
x = H:�0:u and H:�1:u = y. So, there is a surjective function f ∈ H:R → H+:R such
that �i ◦f = H:�i for i = 0; 1. By Lemma 2.0. it follows that K:f is also surjective.

294 W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311

Now we conclude by observing

x 〈K+:(H+:R) 〉y

≡ {de�nition of K+}

(∃u ∈ K:(H+:R) : x6K:�0:u ∧ K:�1:u6y)

≡ {K:f ∈ K:(H:R)→ K:(H+:R) is surjective}

(∃v ∈ K:(H:R) : x6K:�0:(K:f:v) ∧ K:�1:(K:f:v)6y)

≡ {�i ◦f = H:�i; calculus}

(∃v ∈ (K ◦H):R : x6(K ◦H):�0:v ∧ (K ◦H):�1:v6y)

≡ {de�nition of (K ◦H)+}

x 〈 (K ◦H)+:R 〉y:

Lemma 5. Let (A; �;6) be a model for an interpolating functor K and let (A; ;6)
be a model for a functor H :Set→ Set that preserves weak pullbacks. Putting � =
� ◦K:; we have that (A; �;6) is a model for K ◦H .

Proof. Since (6A) is an order on A, it su�ces to verify monotonicity of �. The
function ∈ H:A→ A is monotonic for the preorders H+: (6A) and (6A) . By Lemma
3.0 this implies that K: is monotonic for K+:(H+: (6A)) and K+: (6A) . Since function
� is monotonic for K+: (6A) and (6A) , it follows with Lemma 4 that � is monotonic
for (K ◦H)+: (6A) and (6A) , as required.

5. Concrete functors and examples

In Section 5.1 we present a number of power set functors, which form typical
examples of interpolating functors. Here we also give some toy examples of the theory
of Section 3. In Section 5.2 we introduce string functors. Even more important than
strings are sets of strings, languages. For this purpose a string functor is combined with
a power set functor. It is shown that context-free grammars and mutually recursive
procedures in an imperative language are both examples of the theory.
Section 5.3 treats polynomial functors and their nondeterministic relatives. Here, we

show that Park’s concept of bisimulation of processes (or transition systems) is a special
case of our concept of simulation, but that simulation may also induce an equivalence
relation di�erent from bisimulation. In Section 5.4 we introduce the concept of bounded
spread for functors. This concept is needed for the construction of a universal model
in Section 6.4.

W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311 295

5.1. The power functors

Let Pow :Set→ Set be the functor that assigns to every set A the set Pow:A
of all subsets of A, and that assigns to a function f ∈ A → B the function fs
that assigns to a subset U ⊆A the image im(f|U)⊆B. We also de�ne the functors
Poi; Poc :Set→ Prs that treat sets and functions in the same way as Pow, but are
such that Poi:X is ordered by inclusion (⊆) and that Poc:X is ordered by containment
(⊇). It is easy to see that, in either case, all functions fs are monotonic. Therefore,
they are indeed both functors Set→ Prs.
We also introduce several related functors. We �x an in�nite cardinal number � and

de�ne the subfunctors Powk; Pown; Pownk of Pow by

U ∈ Powk:X ≡ #U ¡ �;

U ∈ Pown:X ≡ 0¡ #U;

U ∈ Pownk:X ≡ 0¡ #U ¡ �;

it is easy to see that indeed, for f ∈ X → Y , the function fs ∈ Pow:X → Pow:Y
restricts correctly to Powk: X → Powk:Y; etc.
We provide the results of these functors with the inclusion or containment ordering,

by replacing the w by i or c. This gives us six other functors Set→ Prs. For example,
Pocn:X is the set of nonempty subsets of X , ordered by ⊇.

Lemma 0. The 12 functors Pow; Powk; Pown; Pownk; Poi; Poik; Poin; Poink;
Poc; Pock; Pocn; Pocnk are interpolating.

Proof. We �rst treat the functor Poi. Let f ∈ B → A; g ∈ C → A; h ∈ X →
B; k ∈ X → C form a pullback diagram. Let U ∈ Poi:B and V ∈ Poi:C be such that
fs:U ⊆ gs:V. In order to show that Poi is interpolating, we have to exhibit a subset
W ∈ Pow:X with U ⊆ hs:W and ks:W ⊆V: We try the candidate

W = {x ∈ X |h:x ∈ U ∧ k:x ∈ V}:

Clearly, hs:W ⊆U and ks:W ⊆V. It remains to show that U ⊆ hs:W . Let u ∈ U . Since
fs:U ⊆ gs:V, there exists v ∈ V with f:u = g:v. Since the diagram is a pullback, there
is a (unique) x ∈ X with h:x = u and k:x = v. Therefore, x ∈ W and hence u ∈ hs:W .
This proves U ⊆ hs:W . So, Poi is interpolating. Note that we even have hs:W = U .
The case of Poc follows by symmetry from Poi.
In order to prove that Pow is interpolating, it su�ces to show that, if fs:U = gs:V,

then hs:W = U and ks:W = V. Above we noted that hs:W = U . Since the de�nition
of W is symmetric in U and V, the additional assumption fs:U = gs:V also implies
ks:W = V.
In order to prove that Powk is interpolating, it su�ces to show that, if #U ¡ � and

#V ¡ �, then #W ¡ �. Since the diagram is a pullback, the function (�w :: (h:w; k:w))

296 W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311

is an injection of W into U × V. Therefore, #W6#U × #V. Since � is an in�nite
cardinal number, and #U ¡ � and #V ¡ �, this implies #W ¡ � (by [13], 10.39).
In order to show that Pown is interpolating, it su�ces to observe that, if U is

nonempty, then W is nonempty since hs:W = U .
The other seven cases use easy combinations of the above arguments.

Remark. The 12 functors do not preserve pullback diagrams: the set W in the above
proof is usually not the only solution. They do preserve weak pullbacks.

Now that we have several interpolating functors, we can determine the corresponding
relational extensions Pow+, etc., cf. Section 4.1.

Lemma 1. Let R⊆A× B. Let u⊆A and v⊆B.
(a) u 〈Poi+:R 〉 v ≡ (∀x ∈ u :: (∃y ∈ v :: x 〈R 〉y));
(b) u 〈Poc+:R 〉 v ≡ (∀y ∈ v :: (∃x ∈ u :: x 〈R 〉y));
(c) Pow+:R = Poi+:R ∩Poc+:R;
(d) Poik+:R; Poin+:R; Poink+:R are the restrictions of Poi+:R; the same holds if

i is replaced by c or w.

Proof. (a) By de�nition, u 〈Poi+:R 〉 v is equivalent to
(a′) (∃w ∈ Poi:R :: u⊆(�0)s:w ∧ (�1)s:w⊆ v):

This implies the right-hand side of (a), since for every element x ∈ u there is an
element y with (x; y) ∈ w, and then x 〈R 〉y and y ∈ v. Conversely, the right-hand
side of (a) implies the existence of a function s ∈ u→ v with x 〈R 〉 s:x for all x ∈ u.
Let w⊆R consist of all pairs (x; s:x) with x ∈ u. Then w is a witness for condition (a′).
(b) Follows from (a) by symmetry.
(c) By de�nition, u 〈Pow+:R 〉 v is equivalent to

(c′) (∃w ∈ Pow:R :: u = (�0)s:w ∧ (�1)s:w = v):

Since (c′) implies (a′), we have Pow+:R⊆Poi+:R. By symmetry, we also have
Pow+:R⊆Poc+:R. Therefore, Pow+:R is contained in the intersection. Conversely,
let (u; v) be an element of the righthand side of (c). We then have functions s ∈ u→ v
and t ∈ v→ u, such that x 〈R 〉 s:x and t:y 〈R 〉y for all x ∈ u and y ∈ v. Let w be the
set of all these pairs (x; s:x) and (t:y; y). Then w is a witness for (c′).
(d) It is clear that Poik+:R⊆Poi+:R∩(Poik:A×Poik:B). For the converse inclusion,

let (u; v) be an element of the righthand side. We take w as constructed in the proof of
part (a). Now it su�ces to observe that #w = #u; so that w ∈ Poik:R since u ∈ Poik:A.
The other eight cases are similar.

Example 0. We can now show that, if G is a relational extension, then G:(=A) need
not be symmetric, and that for an order 6 the relation G:(6) need not be an order
and cv:(G:(6)) may di�er from G:(¿).

W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311 297

In fact, we take G = Poi+ and use part (a) of the above lemma. The �rst assertion
follows from

u 〈Poi+:(=A) 〉 v ≡ u⊆ v:

For the other two assertions we take the standard order 6 on the set of the natural
numbers. Relation Poi+:(6) is not an order because of

{1; 2; 3} 〈Poi+:(6) 〉 {1; 3};
{1; 3} 〈Poi+:(6) 〉 {1; 2; 3}:

Relation cv:(Poi+:(6)) di�ers from Poi+:(¿) because of

{2} 〈Poi+:(6) 〉 {1; 3}; ¬({1; 3} 〈Poi+:(¿) 〉 {2}):

Example 1. We show that in Theorem 3.7, some condition on the model (A; �;6) is
necessary.
For this purpose we take the functor F = Pown with its relational extension G =

Pown+. Let (D;’) be the coalgebra with D = {d; e} and ’ ∈ D → F:D given by
’:d = {d; e} and ’:e = {d}. We choose relation R = D × D. By Lemma 1, we have
G:R = F:D × F:D. Therefore, R is a G-simulation and we have

(D;’; d)�G (D;’; e):

We now construct a G-model A. We choose a natural number n¿2 and let A consist
of the natural numbers ¡ n with the discrete order (=). Using Lemma 1, we get that
the relation G.(=) on F:A is the identity relation. Therefore, (A; �;=) is a G-model
for every function � ∈ F:A→ A. We choose � such that
(i) �:{x} 6= x for every x ∈ A,
(ii) �:U = 0 whenever #U = 2.
We now determine all pre-interpretations f ∈ D→ A:

f is a pre-interpretation

≡ {de�nitions, the order on A is discrete}
� ◦fs ◦’ = f

≡ {de�nition of ’; equality of functions}
�:{f:d; f:e} = f:d ∧ �:{f:d} = f:e

≡ {f:d = f:e contradicts the second conjunct by (i)}
f:d 6= f:e ∧ �:{f:d; f:e} = f:d ∧ �:{f:d} = f:e

≡ {(ii)}
f:d = 0 ∧ f:e = �:{0} 6= 0:

298 W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311

This proves that there is precisely one pre-interpretation, which indeed is an interpre-
tation, and which satis�es f:d 6= f:e. Then �’ = f and we have

A |== (D;’; d) v (D;’; e):

Example 2. Let (A;6) be a complete lattice. Then we have functions sup and inf
∈ Pow: A → A that assign to a subset u⊆A the supremum sup . u and the in�mum
inf :u. It follows easily from Lemma 1 that

u 〈Poi+:6 〉 v ⇒ sup :u6 sup :v;

u 〈Poc+:6 〉 v ⇒ inf :u6 inf :v:

Therefore, (A, sup) is a complete model for Poi and (A, inf) is a complete model for
Poc. Both are complete models for Pow.

5.2. String Functors

Let (−)∗ :Set→ Set be the functor that assigns to every set X the set X ∗ of �nite
strings over X and that extends functions accordingly. This functor preserves pullback
diagrams. In fact, let a pullback diagram be given as in Section 4.2. If u ∈ B∗ and
v ∈ C∗ have the same image in A∗, then the strings u and v have the same length,
say n, and for every index i ¡ n the i-th elements u:i and v:i have the same image in
A. Since the diagram is a pullback, there exist unique elements x:i ∈ X with images
u:i and v:i in B and C. Therefore (x:0; : : : ; x:(n− 1)) is the unique element of X ∗ with
images u and v.

Example 3. The language generated by a context-free grammar. Let T be a set of
terminal symbols. For any set X , let X + T be the disjoint union of X and T . The
functor X 7→ X + T is easily seen to preserve pullbacks. Therefore, the functor X 7→
(X + T)∗ also preserves pullbacks. By Lemma 0 and Lemma 4.4, it follows that the
functor F given by F:X = Poi:(X + T)∗ is interpolating.
It is this functor F that is used in the de�nition of context-free grammars and lan-

guages. In fact, a context-free grammar over T is given by a set D of nonterminal
symbols, a start symbol d ∈ D and a function ’ ∈ D→ F:D that assigns to every non-
terminal a set of productions. Thus, a context-free grammar is an F-scheme (D;’; d).
If we want to specify that every nonterminal has a nonempty �nite set of productions,
we replace Poi by Poink where � = !.
In this case we are only interested in interpretations of F-schemes in the ordered

F-algebra that consists of the languages over T , i.e., A = (Poi:T ∗; �;⊆) where � ∈
F:A→ A is constructed as follows. Let � ∈ (A+ T)∗ → A be given by concatenation
of languages and insertion of T into singleton strings and languages. The function � is
de�ned by �:U = (

⋃
u ∈ U :: �:u): It can be shown that A is a model and that �’:d

is indeed the language generated by the grammar (D;’; d). The model A is complete.
So, Theorem 3.7 is applicable. This boils down as follows.

W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311 299

If R is a binary relation between sets D and E, we de�ne relation R∗ between
(D + T)∗ and (E + T)∗ by

u 〈R∗ 〉 v ≡ #u = #v ∧ (∀i :: u:i = v:i ∈ T ∨ u:i 〈R 〉 v:i):
It follows from Lemma 1(a) and Lemma 4.4 that such a relation is a simulation between
grammars (D;’; d) and (E; ; e) i� d 〈R 〉 e holds and, for every pair of nonterminals
u and v with u 〈R 〉 v and every production x ∈ ’:u, there is a production y ∈ :v with
x 〈R∗ 〉y. If there is such a simulation the language generated by (D;’; d) is contained
in the language of (E; ; e). This is presumably well known, and it is easy to prove
in the concrete setting.
Obviously, not every inclusion can be proved in this way. For instance, the regular

grammars d → �|td and e → �|et, where t is a terminal symbol, generate the same
language t∗, but there is no simulation between the grammars.

Example 4. In [6], the semantics of imperative programs is expressed in terms of
monotonic predicate transformers on a �xed state space. These predicate transformers
form a complete lattice MT with respect to the implication order. Nondeterminate
choice between a nonempty set of commands corresponds to the in�mum (conjunction)
of the corresponding predicate transformers. The semantics of the simple commands
is given by the weakest precondition function wp ∈ S → MT where S is the set of
simple commands. Mutually recursive procedures are given by a declaration

body ∈ H → Pocn:(H + S)∗;

where H is the set of procedure names. Here, we use the functor Pocn, since [6] only
allows nonempty sets, and since the containment order allows the use of the in�mum
in the model, see Example 2 above. In fact, using Example 2 and Lemma 4.5 one
can provide MT with the structure of a model for the functor X 7→ Pocn:(X + S)∗.
Then the meanings wp:h of procedure names h are determined by the least �xpoint
�body ∈ H → MT .
In this case, a scheme (D;’; d) is a declaration of mutually recursive procedures

u ∈ D with bodies ’:u ∈ Pocn:(D + S)∗, and a main procedure d ∈ D. Given two
schemes (D;’; d) and (E; ; e), a relation R between D and E is extended to a relation
R∗ in the same way as in Example 3 above. Here it follows from Lemmas 1(b) and
4.4 that R is a simulation between the schemes i� d 〈R 〉 e holds and, for every pair of
procedure names u ∈ D and v ∈ E with u 〈R 〉 v and every string y ∈ :v, there is x ∈
’:u with x 〈R∗ 〉y. Now, Theorem 3.7 implies that, if there is a simulation R between
the schemes, procedure d is a re�nement of e in the sense that [wp:d:p⇒ wp:e:p] for
every postcondition p.

5.3. Polynomial functors

We �x a set Op of operator symbols and a function � ∈ Op→ Card that assigns to
every operator a cardinal number, its “arity”. A cardinal number is a (well-ordered)

300 W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311

set with cardinality , cf. [13]. So, for a set A, we can identify A with the set of
functions → A.
For a set A, we de�ne the set O:A to be the disjoint union (

∑
p ∈ Op :: A�:p).

This set consists of the pairs (p; I) with p ∈ Op and I ∈ �:p → A. For a function
f ∈ A→ B, we de�ne O:f :O:A→ O:B by O:f:(p; I) = (p;f ◦ I). In this way, O is a
functor Set→ Set. A functor constructed in this way is called a polynomial functor.
An O-algebra is a pair (A; �) with � ∈ O:A → A. Since O:A is the disjoint union

of sets A�:p, function � is uniquely determined by its restrictions �p ∈ A�:p → A, the
so-called operations. Therefore, if the sets Op and the arities �:p are �nite, O-algebras
are just

∑
-algebras in the classical sense of [3].

Lemma 2. Every polynomial functor O preserves pullback diagrams.

Proof. Consider a pullback diagram as in Section 4.2. Let (p; I) ∈ O:B and (q; J) ∈
O:C have the same image in O:A. Then p = q and f ◦ I = g ◦ J . So, for every r ∈ �:p;
we have f:(I:r) = g:(J:r). Since the diagram is a pullback, every r has a unique K:r ∈ X
with h:(K:r) = I:r and k:(K:r) = J:r. So, there is a unique pair in O:X with images
(p; I) ∈ O:A and (q; j) ∈ O:B, namely (p;K).

We may regard functor O as a functor Set→ Prs. Since it preserves pullbacks,
this functor is interpolating. It is straightforward to verify that the associated relational
extension O+ is characterized by

Lemma 3. For a relation R⊆A× B and elements (p; I) ∈ O:A and (q; J) ∈ O:B; we
have

(p; I) 〈O+:R 〉 (q; J) ≡ p = q ∧ I 〈R 〉 J:

Note that, by convention, I 〈R 〉 J expresses (I; J) ∈ (=)→→R.
We now combine the polynomial functor O with the power functors to model non-

determinacy. We de�ne the functors Qw; Qwk; Qi; Qik :Set→ Prs by Qw = Pow ◦O,
etc. Since O preserves pullback diagrams, it follows from Lemmas 0 and 4.4 that these
functors Qw; etc., are interpolating. It may be left to the reader to verify that the
associated relational extensions are determined in

Lemma 4. For a relation R⊆A× B; we have

(a) u 〈Qi+:R 〉 v ≡ (∀(p; I) ∈ u :: (∃(q; J) ∈ v :: p = q ∧ I 〈R 〉 J));
(b) u 〈Qw+:R 〉 v ≡ (∀(p; I) ∈ u :: (∃(q; J) ∈ v :: p = q ∧ I 〈R 〉 J))

∧ (∀(q; J) ∈ v :: (∃(p; I) ∈ u :: p = q ∧ I 〈R 〉 J)).

Example 5. In Lemma 4(b), the reader may recognize bisimulation of processes. In
fact, a process with actions in a set A can be described as a triple (X; s; x) where
s ∈ X → Pow:(A×X) and x ∈ X , see e.g. [5, 12]. So it is a Qw-scheme where functor

W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311 301

O is given with respect to the set of operators Op = A; all of them with arity 1. It
follows then from Lemma 4(b) that simulation with respect to Qw+ is the same as
bisimulation of processes, as introduced by Park in [11].

Example 6. Bisimulation and similarity. Let D = N ∪ {d; e} where N is the set of
natural numbers, and d and e are two other symbols. Let ’ ∈ D → Pow:D be given
by ’:0 = ∅, and ’:(n+ 1) = {n}; and ’:d = {2k|k ∈ N} and ’:e = {2k + 1|k ∈ N}.
We consider the Pow-schemes (D;’; d) and (D;’; e). Regarded as processes, d can
perform an arbitrary odd number of transitions and e can perform an arbitrary even
number of transitions. Using Lemma 1 and the de�nition of simulation, one can show
that there is no Pow+-simulation R with d 〈R〉 e. In terms of process algebras, there
is no bisimulation.
We can also regard the schemes over the functor Poi. In that case, we can use

relation

R = {(n; n+ 1)|n ∈ N} ∪ {(d; e); (e; d)};
which is a Poi+-simulation. Therefore, d and e simulate each other with respect to
Poi+.
Since we associate the term bisimulation with the requirement of Lemma 1(c), we

shall use the term similarity to express that two schemes simulate each other. Here,
(D;’; d) and (D;’; e) are similar for Poi+. One can also prove that they are similar
for Poc+.

5.4. Functors with bounded spread

We de�ne a functor F to have spread bounded by the cardinal number i�, for
every set X and every element y ∈ F:X , there is a subset U ⊆X with #U6 such
that y is in the image of F:U in F:X . We de�ne F to have bounded spread i� there
is a cardinal number such that F has spread bounded by . The concept of bounded
spread will be useful in our main result, Theorem 6.9.
The functors O; Powk; Pownk; Poik; Poink; Qck; Qcnk; Qwk; Qik have bounded

spread. In fact, every element y ∈ O:X is of the form (p; I) with p ∈ Op and I ∈
�:p → X . Then y ∈ F:U for U = im:I . Therefore functor O has spread bounded by
(sup p ∈ Op :: �:p). It is easy to verify that Powk, etc., have spread bounded by �,
and that Qwk and Qik have spread bounded by � × (supp ∈ Op :: �:p).
On the other hand, the functor Pow is not of bounded spread. In fact, for every

cardinal number there exists a set X with #X ¿ . Then X ∈ Pow:X is such that
X ∈ Pow:U implies #U ¿ for all U .

6. The construction of universal models

This section is devoted to a construction of universal models. We go back to the
setting of Section 3 with a functor F :Set→ Set and some relational extension G of

302 W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311

it. The universal model is constructed by means of a premodel. We therefore start to
show in Section 6.1 how a premodel is transformed into a model (this is a special
case of a standard construction in algebra). The premodel we construct consists of
similarity classes of schemes. So, in Section 6.2 we introduce and investigate similarity
of schemes. In Section 6.3, saturated coalgebras are introduced and it is shown that
every saturated coalgebra gives rise to a at and separating premodel. Finally, in Section
6.4, we use these results to prove that there is a universal model if F is of bounded
spread. The ideas in this section were inspired by the work on �nal coalgebras in [12].

6.1. From premodel to model

Let (A; �;6) be a G-premodel. We de�ne ≈ to be the equivalence relation of A
given by

x ≈ y ≡ x6y ∧ y6x:

Let A] = A=≈ be the set of equivalence classes and let q ∈ A → A] be the canon-
ical surjection. We claim that there is a unique function �] ∈ F:A] → A] such that
�] ◦F:q = q ◦ �. To construct �], we choose a function r ∈ A] → A with q ◦ r = 1A] ;
function r chooses a representing element in each equivalence class. Notice that the
functions q and r are both monotonic. We have

q ◦ r = 1A]

⇒ {de�nitions}

(r ◦ q; 1A) ∈ (=A)→→(6) ∧ (1A; r ◦ q) ∈ (=A)→→(6)

⇒ {(rel3) and (rel0)}

(F:r ◦F:q; 1F:A) ∈ (=F:A)→→G:(6)

∧(1F:A; F:r ◦F:q) ∈ (=F:A)→→G:(6)

⇒ {A is a G -premodel}

(� ◦F:r ◦F:q; �) ∈ (=F:A)→→(6) ∩ cv:(6)

⇒ {de�nition of q}

q ◦ � ◦F:r ◦F:q = q ◦ �

≡ {de�ne �] = q ◦ � ◦F:r}

�] ◦F:q = q ◦ �:

W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311 303

So we de�ne �] = q ◦ � ◦F:r. The function �] is uniquely characterized by the last line
of this calculation, since F:q is surjective by Lemma 2.0. The preorder 6 on A induces
an order on the set A], which is also denoted 6. Using Lemma 3.0 on function r, we
get that �] ∈ F:A] → A] satis�es (�]; �]) ∈ G:(6)→→(6). In this way, (A]; �]; 6) is
a G-model.
It is easy to verify that, for every coalgebra (D;’), the functions q and r transfer pre-

interpretations and post-interpretations between A and A]. More precisely, if f ∈ D→
A and g ∈ D → A] are pre-interpretations, then q ◦f ∈ D → A] and r ◦ g ∈ D → A
are pre-interpretations, and similarly for post-interpretations. It follows that if A is at
then A] is at, and if A is separating then A] is separating (see Sections 3.3 and 3.4
for the de�nitions).

6.2. Simulation and similarity

We come back to relation�G de�ned in Section 3.4. We identify a scheme (D;’; d)
with the base point d when the intended coalgebra (D;’) is clear from the context. In
that case, we omit the index G from the symbol �. In this way we get, for every pair
of coalgebras (D;’) and (E;), a relation (�)⊆D × E given by

x � y ≡ (D;’; x)�G (E; ; y):

Lemma 0. Relation � is the greatest (i.e.; weakest) G-simulation between (D;’) and
(E;).

Proof. By de�nition, we have R⊆ (�) for every G-simulation R. Therefore, it su�ces
to prove that � is a G-simulation, i.e., that (’;) ∈ (�)→→G:(�).
Let x ∈ D; y ∈ E with x � y. We have to prove ’:x 〈G:(�) 〉 :y. We can choose

a G-simulation R from (D;’) to (E;) with x 〈R 〉y. Since R is a G-simulation, we
have ’:x 〈G:R 〉 :y. On the other hand, R⊆(�) and hence G:R⊆G:(�). This implies
that ’:x 〈G:(�) 〉 :y.

We use relation �G to de�ne the G-similarity relation 'G between F-schemes by

x 'G y ≡ x�G y ∧ y�G x:

Since �G is a preorder, relation 'G is an equivalence relation of schemes. When
schemes are given by base points, we write ' for 'G.

304 W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311

Remark. We do not use the term bisimulation here since the relations used to infer
x�G y and y�G x may be di�erent, whereas bisimulation of processes requires the
same relation for both. See Example 6 in Section 5.

Let r be a function from coalgebra (D;’) to coalgebra (E;). Function r is said
to preserve similarity i� x ' r:x for all x ∈ D. Function r is called a comorphism i�
F:r ◦’ = ◦ r.

D
’−−−−−→ F:D

r

y

y
F:r

E
 −−−−−→ F:E

Lemma 1. Every comorphism preserves similarity.

Proof. This follows from the next lemma, with the discrete order =E on E (a direct
proof can also be given, but is not much shorter).

Lemma 2. Let (E;) be a coalgebra with preorder 6 such that (;) ∈ (6)→→
G:(6). Let (D;’) be a coalgebra and let r ∈ D→ E.
(a) Assume F:r ◦’ 〈G:(6) 〉 ◦ r. Then (D;’; d) �G (E; ; r:d) for all d ∈ D.
(b) Assume ◦ r 〈G:(6) 〉F:r ◦’. Then (E; ; r:d) �G (D;’; d) for all d ∈ D.

Proof. (a) Let relation R⊆D×E be de�ned by x 〈R 〉y i� r:x6y. We have d 〈R 〉 r:d
for all d ∈ D. So, it remains to prove that R is a simulation:

(’;) ∈ R→→G:R

≡ {de�nitions}

(∀x; y : r:x6y :’:x 〈G:([1D; r] ◦ (6)) 〉 :y)

⇐ {calculus and Lemma 4.2}

(∀x; y : r:x6y :’:x 〈 [1F:D; F:r] ◦G:(6))) 〉 :y)

≡ {calculus}

(∀x; y : r:x6y :F:r:(’:x) 〈G:(6) 〉 :y)

⇐ {transitivity of G:(6)}

(∀x; y : r:x6y :F:r:(’:x) 〈G:(6)) 〉 :(r:x) ∧ :(r:x) 〈G:(6) 〉 :y)

W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311 305

≡ {assumption of yields second conjunct}

F:r ◦’ 〈G:(6) 〉 ◦ r:

(b) The other case is similar and uses relation R⊆E × D given by R = (6) ◦ [r; 1D].

Let (D;’) be an F-coalgebra. We shall now use that the pair (F:D; F:’) is also an
F-coalgebra. Let us call it the F-transform of (D;’). Function ’ ∈ D → F:D is a
comorphism because of F:’ ◦’ = F:’ ◦’. By Lemma 1, this implies that ’ preserves
similarity.

Lemma 3. Consider coalgebras (D;’) and (E;); and their F-transforms.

(a) ’:d � :e ≡ d � e for all d ∈ D; e ∈ E:

(b) x 〈G:(�) 〉y ≡ x � y for all x ∈ F:D; y ∈ F:E:

Proof. (a) Since � is given by restricting �G , and �G is a preorder on schemes, this
follows from the fact that ’ and preserve similarity by Lemma 1. In fact, ’:d ' d
and :e ' e:
(b) In order to prove the implication (⇒), it su�ces to prove that relation G:

(�)⊆F:D × F:E is a G-simulation from coalgebra (F:D; F:’) to (F:E; F:), i.e., that

(F:’; F:) ∈ G:(�)→→G:(G:(�)):

By (rel3), this follows from Lemma 0.
In order to prove (⇐) of (b), we observe that part (a) implies

[1D; ’] ◦ (�) ◦ [; 1E] = (�);

and hence by (rel2) and Lemma 4.2

(∗) [1F:D; F:’] ◦G:(�) ◦ [F: ; 1F:E]⊆G:(�):
This enables us to conclude

x 〈G:(�) 〉y

⇐ {(∗)}

F:’:x 〈G:(�) 〉F: :y

⇐ {Lemma 0 applied to the F-transforms}

x � y:

306 W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311

6.3. Saturated coalgebras

Lemma 3(a) implies that ’ ∈ D→ F:D induces an injection from the set of similarity
classes of D to the set of similarity classes of F:D. The coalgebra (D;’) is called
saturated if ’ induces a bijection. More concretely, the coalgebra (D;’) is de�ned to
be G-saturated i�, for every x ∈ F:D, there exists y ∈ D with x ' y.
In the remainder of this subsection, we assume that (H; �) is a G-saturated coalgebra.

It follows that we can choose a function � ∈ F:H → H that preserves similarity. In
this way, (H; �) is an F-algebra. It follows from Lemma 1 that

�:(�:x) ' x for all x ∈ F:H:

For x; y ∈ F:H we have

�:x � �:y

≡ {Lemma 3(a)}
�:(�:x) � �:(�:y)

≡ {previous similarity}
x � y

≡ {Lemma 3(b)}
x 〈G:(�) 〉y:

This proves that the pair (H; �;�) is a G-premodel.
Now that we have a G-premodel, we may consider pre-interpretations and post-

interpretations in it.

Lemma 4. Let (D;’) be a coalgera and let r ∈ D→ H be a function.
(a) If r is a pre-interpretation; then (D;’; d)�G (H; �; r:d) for all d ∈ D.
(b) If r is a post-interpretation; then (H; �; r:d)�G (D;’; d) for all d ∈ D.
(c) If function r from (D;’) to (H; �) preserves similarity; then P’:r ' r:

Proof.
(a)

P’:r � r

≡ {de�nition of P’}

� ◦F:r ◦’ � r

≡ {Lemma 3(a) and � ◦ � ' 1F:E}

F:r ◦’ � � ◦ r

W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311 307

≡ {Lemma 3(b)}

F:r ◦’ 〈G:(�) 〉 � ◦ r

⇒ {Lemma 2(a) and Lemma 0}

(D;’; d)�G (H; �; r:d) for all d ∈ D:

(b) This case is similar. It uses Lemma 2(b) instead of 2(a).
(c)

P’:r � r

≡ {as in the previous cases}

F:r ◦’ ' � ◦ r

⇐ {’; �; and r preserve similarity}

F:r preserves similarity

≡ {formalization}

[1F:D; F:r]⊆(�) ∧ [F:r; 1F:D]⊆(�)

≡ {Lemma 3(b)}

[1F:D; F:r]⊆G:(�) ∧ [F:r; 1F:D]⊆G:(�)

⇐ {Lemma 4.2 and (rel1)}

[1D; r]⊆(�) ∧ [r; 1D]⊆(�)

≡ {r preserves similarity}

true:

Lemma 5. The G-premodel (H; �;�) is at and separating (see Sections 3:3 and 3:4).

Proof. First we prove atness. Let (D;’) be a coalgebra with a post-interpretation
f ∈ D→ H and a pre-interpretation g ∈ D→ H . Lemma 4 yields

(H; �; f:d)�G (D;’; d)�G (H; �; g:d)

for all d. By transitivity of �G and the de�nition of � on H , this implies f:d � g:d
for all d ∈ D, and hence f � g. This proves that H is at.
Secondly, let f ∈ D → H be a pre-interpretation of coalgebra (D;’) and let g ∈

E → H be a post-interpretation of coalgebra (E;). Let d ∈ D and e ∈ E be such that

308 W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311

f:d � g:e. It follows from Lemma 4 that

(D;’; d)�G (H; �; f:d)�G (H; �; g:e)�G (E; ; e):

This implies (D;’; d)�G (E; ; e), i.e., the existence of a G-simulation of schemes
from (D;’; d) to (E; ; e). This proves that H is separating.

We have thus shown that every saturated coalgebra (H; �) gives rise to a at and
separating G-premodel (H; �;�). This is the �rst step in the construction of a universal
model, as asked for in Section 3.4.

6.4. The existence of saturated coalgebras

Above we have shown that saturated coalgebras can be useful. This justi�es the
e�ort to construct them, if possible. The problem is that, in general, the set F:D is
bigger than D, so that the schemes in F:D can be more complex than the schemes
in D. The solution lies in the fact that the scheme up to similarity is determined by
its shape in the “neighbourhood” of its base point. For this purpose, we introduce the
assumption that F is of bounded spread, see Section 5.4.

Lemma 6. Assume that F has spread bounded by . Then every F-scheme (D;’; d)
is similar to an F-scheme (D′; ’′; d′) with #D′6(+ 1)!.

Proof. Let (D;’; d) be an F-scheme. Since F is of spread bounded by , we can
choose, for every x ∈ D, a subset B:x⊆D such that ’:x is in the image of F:(B:x) in
F:D, and that x ∈ B:x; and that #(B:x)6+ 1.
We now de�ne B0 = {d} and Bn+1 = (

⋃
x ∈ Bn :: B:x) for all n, and D′ =

(
⋃

n :: Bn): For every x ∈ D′; there is n with x ∈ Bn, and hence B:x⊆D′. It follows
that for every x ∈ D′ we have that ’:x is in the image of F:(D′) in F:D: This implies
that function ’ ∈ D → F :D restricts to a function ’′ ∈ D′ → F :D′ such that the
inclusion D′ → D is a comorphism from coalgebra (D′; ’′) to (D; ’). By Lemma 1,
therefore, the two schemes (D′; ’′; d) and (D;’; d) are similar. Finally, since #B:x6
+ 1 for every x, we have #Bn6(+ 1)n for all n, and therefore #D′6(+ 1)!.

The next point is to construct an F-coalgebra that “contains” all coalgebra structures
on a given set. This is done as follows.
For a set X , let M:X be the set of pairs (; x) with ∈ X → F:X and x ∈ X .

For ∈ X → F:X , we de�ne jd: ∈ X → M:X by jd: :x = (; x): We de-
�ne function � ∈ M:X → F:(M:X) by �:(; x) = F:(jd:):(:x): In this way, ob-
viously, (M:X; �) is a coalgebra. The main point of the construction is that, for any
 ∈ X → F:X , the function jd: ∈ X → M:X is a comorphism from (X;) to (M:X; �),

W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311 309

since � ◦ jd: = F:(jd:) ◦ .

X
 −−−−−→ F:X

jd:

y

y
F: (jd:)

M:X
�−−−−−→ F:(M:X)

Lemma 7. Let (D;’; d) be an F-scheme and let function i ∈ D → X be injective.
Then there is y ∈ M:X such that (D;’; d) 'G (M:X; �; y).

Proof. Let D′⊆X be the image of i. Since i ∈ D→ D′ is bijective there is a unique
function ′ ∈ D′ → F:X with ′ ◦ i = F:i ◦’. We de�ne ∈ X → F:X by |D′ = ′

and :x = F:i:(’:d) for x 6∈ D′. Then ◦ i = F:i ◦’. So i is a comorphism from
(D;’) to (X;). The composition jd: ◦ i is a comorphism from (D;’) to (M:X; �).
Choosing y = jd: :(i:d) we have (D;’; d) 'G (M:X; �; y) by Lemma 1.

Lemma 8. Assume that the functor F has spread bounded by . Let X be a set with
cardinality ¿(+ 1)!.
(a) For every F-scheme (D;’; d) there is y ∈ M:X such that (D;’; d) 'G (M:X; �; y).
(b) The coalgebra (M:X; �) is G-saturated.

Proof. (a) This follows from the Lemmas 6 and 7, since for every set D′ with
#D′6(+ 1)! there exists an injective function i ∈ D′ → X .
(b) This follows from part (a) and the de�nition of saturation.

As announced in Section 3.4, the existence of a universal model implies that simu-
lation is a complete proof method for ordering in every model. Under a mild condition
on the functor involved, we can now formulate and prove our main result that universal
models exist.

Theorem 9. Let the functor F be of bounded spread. Then there is a universal G-
model.

Proof. In view of the �nal remark in Section 3.4, it su�ces to prove the existence of
a at and separating G-model in which every coalgebra has meaning.
Assume F has spread bounded by . Choose a set X with cardinality ¿(+1)!. By

Lemma 8 and the theory of Section 6.3, we can choose � ∈ F:(M:X)→ M :X such that
� ◦ � ' 1M:X and then (M:X; �;�) is a at and separating G-premodel. Using Section
6.1, we form the G-model N:X = (M:X]; �];�), which is also at and separating.
Let (D;’) be a coalgebra. By Lemma 8(a), there exists a similarity preserving

function r ∈ (D;’)→ (M:X; �). It follows from Lemma 4(c) that the induced function

310 W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311

r ∈ D→ N:X is an interpretation. Since N:X is at, this interpretation is the meaning
�’ of (D;’) in N:X .

Remark. Our universal models play another role than the �nal coalgebras of [12, 7].
They do not aspire to be the last word on semantics. They only serve to show that
if one discards all model assumptions, the order between recursively de�ned values is
due to simulation.
In general, a universal model need not be the algebra obtained from a �nal coalgebra

by reversing the arrow. In fact, for the latter algebra (if it exists), the function � ∈
F:A → A is bijective. Therefore, it su�ces to give an example where the function �
of a universal G-model (A; �;6) cannot be bijective.
For this purpose, we consider the case de�ned by the functor Poik of Section 5.1.

So F = Poik and G = Poik+. We consider the simple F-schemes (D;’; d) and
(E; ; e) given by D = {d} and E = {e}, and ’:d = ∅ and :e = {e}: Using Lemma
5.1, we get (D;’; d) �G (E; ; e) and (E; ; e) 6�G (D;’; d).
Since Poik has bounded spread, a universal G-model (A; �;6) exists (say some

N:X). Since the model is universal, the two schemes d and e mentioned above have
meanings d0 = <d= and e0 = <e= in A that satisfy d06e0 and d0 6= e0. The sets
{d0; e0} and {e0} are elements of F:A and, by Lemma 5.1, they satisfy {d0; e0} 〈G:
(6) 〉 {e0}, and {e0} 〈G:(6) 〉 {d0; e0}. Since � is monotonic and 6 is an order on
A, it follows that �:{d0; e0} = �:{e0}. This proves that � is not injective and hence
not bijective.
In passing, one may note that the preorder G:(6) on F:A is not an order. Also, notice

that, if one replaces Poik by Powk, the example breaks down since then d�G e is
invalidated. This implies that the universal model depends on G.

7. Conclusion and outlook

We have shown that least �xpoint semantics and simulation are closely related, in a
very abstract setting. In fact, simulation between recursive de�nition schemes implies
an order relation in almost all models. On the other hand, under mild conditions on
the functor involved, there is a model such that, if the values de�ned are ordered in
that model, the schemes have a simulation relation.
The cardinality estimates needed in Section 6 seem to be not essential for the ideas

of this paper. It is likely that they can be avoided by leaving ZF set theory and working
with classes, as in [1]. Even if that is true, however, it is useful to know that for many
functors it is not necessary to leave set theory.
Several further questions emerge. What relations are there with �nal coalgebras and

initial algebras? What happens if we restrict our attention to models that satisfy certain
laws? Can we give a similar condition for the order between expressions that contain
recursively de�ned values? What is the impact of the general theory for speci�c functors
and models?

W.H. Hesselink, A. Thijs / Theoretical Computer Science 238 (2000) 275–311 311

Acknowledgements

We are grateful to Rutger Dijkstra and two referees for questions, suggestions, and
criticisms that have led to many improvements.

References

[1] P. Aczel, N. Mendler, A �nal coalgebra theorem, in: D.H. Pitt, D.E. Rydeheard, P. Dybjer, A.M. Pitts.
A. Poign�e (Eds.), Category Theory and Computer Science, Proceedings, Manchester, Lecture Notes in
Computer Science, 389, Springer, Berlin, 1989, pp. 357–365.

[2] R. Backhouse, J. van der Woude, Lecture Notes of the STOP 1992 Summerschool on Constructive
Algorithms, 1992.

[3] G. Birkho�, On the structure of abstract algebras, Proc. Cambridge Philos. Soc. 31 (1935).
[4] E.W. Dijkstra, C.S. Scholten, Predicate Calculus and Program Semantics, Springer, Berlin, 1990.
[5] W.H. Hesselink, Deadlock and fairness in morphisms of transition systems, Theoret. Comput. Sci. 59

(1988) 235–257.
[6] W.H. Hesselink, Programs, Recursion and Unbounded Choice, Predicate Transformation Semantics

and Transformation Rules. Cambridge Tracts in Theoretical Computer Science, vol. 27, Cambridge
University Press, Cambridge, 1992.

[7] B. Jacobs, J. Rutten, A tutorial on (co)algebras and (co)induction, Bull. EATCS 62 (1997) 222–259.
[8] E. Meier, Calculating compilers, Thesis Nijmegen, 1992.
[9] R. Milner, An algebraic de�nition of simulation between programs, Proc. 2nd Internat. Joint Conf. on

Arti�cial Intelligence, British Comp. Soc., 1971.
[10] Y.N. Moschovakis, The logic of functional recursion, in: M.L. Dalla Chiara et al. (Eds.), Logic and

Scienti�c Methods, Kluwer, Dordrcht, 1997, pp. 179–207.
[11] D.M.R. Park, Concurrency and automata on in�nite sequences, in: P. Deusen (Ed.), Proc. 5th Gl Conf.,

Lecture Notes in Computer Science, vol 104, Springer, Berlin, 1981, pp. 167–183.
[12] J.J.M.M. Rutten, D. Turi, On the foundations of �nal semantics: non-standard sets, metric spaces, partial

orders, in: J.W. de Bakker, W.P. de Roever, G. Rozenberg (Eds.), Proc. REX Workshop on Semantics:
Foundations and Applications, Lecture Notes in Computer Science, 666, Springer, Berlin, 1993, pp.
477–530.

[13] G. Takeuti, W.M. Zaring, Introduction to Axiomatic Set Theory, Springer, Berlin, 1971.
[14] A.M. Thijs, Simulation and �xpoint semantics, Thesis, Groningen, 1996.

