2,000 research outputs found

    Challenges in video based object detection in maritime scenario using computer vision

    Get PDF
    This paper discusses the technical challenges in maritime image processing and machine vision problems for video streams generated by cameras. Even well documented problems of horizon detection and registration of frames in a video are very challenging in maritime scenarios. More advanced problems of background subtraction and object detection in video streams are very challenging. Challenges arising from the dynamic nature of the background, unavailability of static cues, presence of small objects at distant backgrounds, illumination effects, all contribute to the challenges as discussed here

    Design and integration of vision based sensors for unmanned aerial vehicles navigation and guidance

    Get PDF
    In this paper we present a novel Navigation and Guidance System (NGS) for Unmanned Aerial Vehicles (UAVs) based on Vision Based Navigation (VBN) and other avionics sensors. The main objective of our research is to design a lowcost and low-weight/volume NGS capable of providing the required level of performance in all flight phases of modern small- to medium-size UAVs, with a special focus on automated precision approach and landing, where VBN techniques can be fully exploited in a multisensory integrated architecture. Various existing techniques for VBN are compared and the Appearance-based Navigation (ABN) approach is selected for implementation

    Vision based strategies for implementing Sense and Avoid capabilities onboard Unmanned Aerial Systems

    Get PDF
    Current research activities are worked out to develop fully autonomous unmanned platform systems, provided with Sense and Avoid technologies in order to achieve the access to the National Airspace System (NAS), flying with manned airplanes. The TECVOl project is set in this framework, aiming at developing an autonomous prototypal Unmanned Aerial Vehicle which performs Detect Sense and Avoid functionalities, by means of an integrated sensors package, composed by a pulsed radar and four electro-optical cameras, two visible and two Infra-Red. This project is carried out by the Italian Aerospace Research Center in collaboration with the Department of Aerospace Engineering of the University of Naples “Federico II”, which has been involved in the developing of the Obstacle Detection and IDentification system. Thus, this thesis concerns the image processing technique customized for the Sense and Avoid applications in the TECVOL project, where the EO system has an auxiliary role to radar, which is the main sensor. In particular, the panchromatic camera performs the aiding function of object detection, in order to increase accuracy and data rate performance of radar system. Therefore, the thesis describes the implemented steps to evaluate the most suitable panchromatic camera image processing technique for our applications, the test strategies adopted to study its performance and the analysis conducted to optimize it in terms of false alarms, missed detections and detection range. Finally, results from the tests will be explained, and they will demonstrate that the Electro-Optical sensor is beneficial to the overall Detect Sense and Avoid system; in fact it is able to improve upon it, in terms of object detection and tracking performance

    Low-cost navigation and guidance systems for unmanned aerial vehicles - part 1: Vision-based and integrated sensors

    Get PDF
    In this paper we present a new low-cost navigation system designed for small size Unmanned Aerial Vehicles (UAVs) based on Vision-Based Navigation (VBN) and other avionics sensors. The main objective of our research was to design a compact, light and relatively inexpensive system capable of providing the Required Navigation Performance (RNP) in all phases of flight of a small UAV, with a special focus on precision approach and landing, where Vision Based Navigation (VBN) techniques can be fully exploited in a multisensor integrated architecture. Various existing techniques for VBN were compared and the Appearance-Based Approach (ABA) was selected for implementation. Feature extraction and optical flow techniques were employed to estimate flight parameters such as roll angle, pitch angle, deviation from the runway and body rates. Additionally, we addressed the possible synergies between VBN, Global Navigation Satellite System (GNSS) and MEMS-IMU (Micro-Electromechanical System Inertial Measurement Unit) sensors, as well as the aiding from Aircraft Dynamics Models (ADMs)

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas

    Aircraft Attitude Estimation Using Panoramic Images

    Full text link
    This thesis investigates the problem of reliably estimating attitude from panoramic imagery in cluttered environments. Accurate attitude is an essential input to the stabilisation systems of autonomous aerial vehicles. A new camera system which combines a CCD camera, UltraViolet (UV) filters and a panoramic mirror-lens is designed. Drawing on biological inspiration from the Ocelli organ possessed by certain insects, UV filtered images are used to enhance the contrast between the sky and ground and mitigate the effect of the sun. A novel method for real–time horizon-based attitude estimation using panoramic image that is capable of estimating an aircraft pitch and roll at a low altitude in the presence of sun, clouds and occluding features such as tree, building, is developed. Also, a new method for panoramic sky/ground thresholding, consisting of a horizon– and a sun–tracking system which works effectively even when the horizon line is difficult to detect by normal thresholding methods due to flares and other effects from the presence of the sun in the image, is proposed. An algorithm for estimating the attitude from three–dimensional mapping of the horizon projected onto a 3D plane is developed. The use of optic flow to determine pitch and roll rates is investigated using the panoramic image and image interpolation algorithm (I2A). Two methods which employ sensor fusion techniques, Extended Kalman Filter (EKF) and Artificial Neural Networks (ANNs), are used to fuse unfiltered measurements from inertial sensors and the vision system. The EKF estimates gyroscope biases and also the attitude. The ANN fuses the optic flow and horizon–based attitude to provide smooth attitude estimations. The results obtained from different parts of the research are tested and validated through simulations and real flight tests

    Real Time UAV Altitude, Attitude and Motion Estimation form Hybrid Stereovision

    Get PDF
    International audienceKnowledge of altitude, attitude and motion is essential for an Unmanned Aerial Vehicle during crit- ical maneuvers such as landing and take-off. In this paper we present a hybrid stereoscopic rig composed of a fisheye and a perspective camera for vision-based navigation. In contrast to classical stereoscopic systems based on feature matching, we propose methods which avoid matching between hybrid views. A plane-sweeping approach is proposed for estimating altitude and de- tecting the ground plane. Rotation and translation are then estimated by decoupling: the fisheye camera con- tributes to evaluating attitude, while the perspective camera contributes to estimating the scale of the trans- lation. The motion can be estimated robustly at the scale, thanks to the knowledge of the altitude. We propose a robust, real-time, accurate, exclusively vision-based approach with an embedded C++ implementation. Although this approach removes the need for any non-visual sensors, it can also be coupled with an Inertial Measurement Unit

    Low-cost vision sensors and integrated systems for unmanned aerial vehicle navigation

    Get PDF
    A novel low cost navigation system based on Vision Based Navigation (VBN) and other avionics sensors is presented, which is designed for small size Unmanned Aerial Vehicle (UAV) applications. The main objective of our research is to design a compact, light and relatively inexpensive system capable of providing the required navigation performance in all phases of flight of a small UAV, with a special focus on precision approach and landing, where Vision Based Navigation (VBN) techniques can be fully exploited in a multisensory integrated architecture. Various existing techniques for VBN are compared and the Appearance-based Navigation (ABN) approach is selected for implementation. Feature extraction and optical flow techniques are employed to estimate flight parameters such as roll angle, pitch angle, deviation from the runway and body rates. Additionally, we address the possible synergies between VBN, Global Navigation Satellite System (GNSS) and MEMS-IMU (Micro-Electromechanical System Inertial Measurement Unit) sensors and also the use of Aircraft Dynamics Models (ADMs) to provide additional information suitable to compensate for the shortcomings of VBN and MEMS-IMU sensors in high-dynamics attitude determination tasks. An Extended Kalman Filter (EKF) is developed to fuse the information provided by the different sensors and to provide estimates of position, velocity and attitude of the UAV platform in real-time. Two different integrated navigation system architectures are implemented. The first uses VBN at 20 Hz and GPS at 1 Hz to augment the MEMS-IMU running at 100 Hz. The second mode also includes the ADM (computations performed at 100 Hz) to provide augmentation of the attitude channel. Simulation of these two modes is performed in a significant portion of the AEROSONDE UAV operational flight envelope and performing a variety of representative manoeuvres (i.e., straight climb, level turning, turning descent and climb, straight descent, etc.). Simulation of the first integrated navigation system architecture (VBN/IMU/GPS) shows that the integrated system can reach position, velocity and attitude accuracies compatible with CAT-II precision approach requirements. Simulation of the second system architecture (VBN/IMU/GPS/ADM) also shows promising results since the achieved attitude accuracy is higher using the ADM/VBS/IMU than using VBS/IMU only. However, due to rapid divergence of the ADM virtual sensor, there is a need for frequent re-initialisation of the ADM data module, which is strongly dependent on the UAV flight dynamics and the specific manoeuvring transitions performed

    A low-cost vision based navigation system for small size unmanned aerial vehicle applications

    Get PDF
    Not availabl
    • 

    corecore