10,170 research outputs found

    Fixed-point Factorized Networks

    Full text link
    In recent years, Deep Neural Networks (DNN) based methods have achieved remarkable performance in a wide range of tasks and have been among the most powerful and widely used techniques in computer vision. However, DNN-based methods are both computational-intensive and resource-consuming, which hinders the application of these methods on embedded systems like smart phones. To alleviate this problem, we introduce a novel Fixed-point Factorized Networks (FFN) for pretrained models to reduce the computational complexity as well as the storage requirement of networks. The resulting networks have only weights of -1, 0 and 1, which significantly eliminates the most resource-consuming multiply-accumulate operations (MACs). Extensive experiments on large-scale ImageNet classification task show the proposed FFN only requires one-thousandth of multiply operations with comparable accuracy

    Spectral Detection on Sparse Hypergraphs

    Get PDF
    We consider the problem of the assignment of nodes into communities from a set of hyperedges, where every hyperedge is a noisy observation of the community assignment of the adjacent nodes. We focus in particular on the sparse regime where the number of edges is of the same order as the number of vertices. We propose a spectral method based on a generalization of the non-backtracking Hashimoto matrix into hypergraphs. We analyze its performance on a planted generative model and compare it with other spectral methods and with Bayesian belief propagation (which was conjectured to be asymptotically optimal for this model). We conclude that the proposed spectral method detects communities whenever belief propagation does, while having the important advantages to be simpler, entirely nonparametric, and to be able to learn the rule according to which the hyperedges were generated without prior information.Comment: 8 pages, 5 figure

    Detectability thresholds and optimal algorithms for community structure in dynamic networks

    Get PDF
    We study the fundamental limits on learning latent community structure in dynamic networks. Specifically, we study dynamic stochastic block models where nodes change their community membership over time, but where edges are generated independently at each time step. In this setting (which is a special case of several existing models), we are able to derive the detectability threshold exactly, as a function of the rate of change and the strength of the communities. Below this threshold, we claim that no algorithm can identify the communities better than chance. We then give two algorithms that are optimal in the sense that they succeed all the way down to this limit. The first uses belief propagation (BP), which gives asymptotically optimal accuracy, and the second is a fast spectral clustering algorithm, based on linearizing the BP equations. We verify our analytic and algorithmic results via numerical simulation, and close with a brief discussion of extensions and open questions.Comment: 9 pages, 3 figure

    A minimal model for congestion phenomena on complex networks

    Full text link
    We study a minimal model of traffic flows in complex networks, simple enough to get analytical results, but with a very rich phenomenology, presenting continuous, discontinuous as well as hybrid phase transitions between a free-flow phase and a congested phase, critical points and different scaling behaviors in the system size. It consists of random walkers on a queueing network with one-range repulsion, where particles can be destroyed only if they can move. We focus on the dependence on the topology as well as on the level of traffic control. We are able to obtain transition curves and phase diagrams at analytical level for the ensemble of uncorrelated networks and numerically for single instances. We find that traffic control improves global performance, enlarging the free-flow region in parameter space only in heterogeneous networks. Traffic control introduces non-linear effects and, beyond a critical strength, may trigger the appearance of a congested phase in a discontinuous manner. The model also reproduces the cross-over in the scaling of traffic fluctuations empirically observed in the Internet, and moreover, a conserved version can reproduce qualitatively some stylized facts of traffic in transportation networks
    • …
    corecore