28,563 research outputs found

    Fixed Point Arithmetic in SHE Scheme

    Get PDF
    The purpose of this paper is to investigate fixed-point arithmetic in ring-based Somewhat Homomorphic Encryption (SHE) schemes. We provide three main contributions: firstly, we investigate the representation of fixed-point numbers. We analyse the two representations from Dowlin et al, representing a fixed-point number as a large integer (encoded as a scaled polynomial) versus a polynomial-based fractional representation. We show that these two are, in fact, isomorphic by presenting an explicit isomorphism between the two that enables us to map the parameters from one representation to another. Secondly, given a computation and a bound on the fixed-point numbers used as inputs and scalars within the computation, we achieve a way of producing lower bounds on the plaintext modulus pp and the degree of the ring dd needed to support complex homomorphic operations. Finally, as an application of these bounds, we investigate homomorphic image processing

    Computational reverse mathematics and foundational analysis

    Get PDF
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in the evaluation of major foundational approaches by a careful examination of two case studies: a partial realization of Hilbert's program due to Simpson [1988], and predicativism in the extended form due to Feferman and Sch\"{u}tte. Shore [2010, 2013] proposes that equivalences in reverse mathematics be proved in the same way as inequivalences, namely by considering only ω\omega-models of the systems in question. Shore refers to this approach as computational reverse mathematics. This paper shows that despite some attractive features, computational reverse mathematics is inappropriate for foundational analysis, for two major reasons. Firstly, the computable entailment relation employed in computational reverse mathematics does not preserve justification for the foundational programs above. Secondly, computable entailment is a Π11\Pi^1_1 complete relation, and hence employing it commits one to theoretical resources which outstrip those available within any foundational approach that is proof-theoretically weaker than Π11-CA0\Pi^1_1\text{-}\mathsf{CA}_0.Comment: Submitted. 41 page
    • …
    corecore