5 research outputs found

    Fixpoints and relative precompleteness

    Full text link
    We study relative precompleteness in the context of the theory of numberings, and relate this to a notion of lowness. We introduce a notion of divisibility for numberings, and use it to show that for the class of divisible numberings, lowness and relative precompleteness coincide with being computable. We also study the complexity of Skolem functions arising from Arslanov's completeness criterion with parameters. We show that for suitably divisible numberings, these Skolem functions have the maximal possible Turing degree. In particular this holds for the standard numberings of the partial computable functions and the c.e. sets.Comment: 12 page

    Computability in partial combinatory algebras

    Full text link
    We prove a number of elementary facts about computability in partial combinatory algebras (pca's). We disprove a suggestion made by Kreisel about using Friedberg numberings to construct extensional pca's. We then discuss separability and elements without total extensions. We relate this to Ershov's notion of precompleteness, and we show that precomplete numberings are not 1-1 in general

    Fixed point theorems for precomplete numberings

    Get PDF
    Contains fulltext : 205967.pdf (preprint version ) (Open Access
    corecore