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In the context of his theory of numberings, Ershov showed that Kleene’s recursion 
theorem holds for any precomplete numbering. We discuss various generalizations of 
this result. Among other things, we show that Arslanov’s completeness criterion also 
holds for every precomplete numbering, and we discuss the relation with Visser’s 
ADN theorem, as well as the uniformity or nonuniformity of the various fixed point 
theorems. Finally, we base numberings on partial combinatory algebras and prove 
a generalization of Ershov’s theorem in this context.
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1. Introduction

In this paper we discuss various fixed point theorems in computability theory, and related areas such as 
λ-calculus and combinatory algebra. The starting point is Kleene’s famous recursion theorem [15], which 
was generalized to precomplete numberings by Ershov [10]. These are discussed in section 3, after we first 
discuss Ershov’s theory of numberings in section 2.

The recursion theorem was generalized in other ways by Visser [30] and Arslanov [2]. Visser proved 
the so-called ‘anti diagonal normalization theorem’ that we discuss in section 4. Arslanov extended the 
recursion theorem from computable functions to arbitrary functions computable from an incomplete c.e. 
Turing degree. The Arslanov completeness criterion states that a c.e. set is Turing complete if and only if 
it computes a fixed point free function. Recently, a joint generalization of Arslanov’s completeness criterion 
and the ADN theorem was given by Terwijn [27]. We discuss Arslanov’s completeness criterion in section 5.
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Finally, in sections 6 and 7, we discuss the relation with Feferman’s version of the recursion theorem 
for partial combinatory algebras (pca’s) [11]. Here we base the notion of numbering on pca’s of arbitrary 
cardinality, and prove a fixed point theorem for these (Theorem 6.5). This generalizes Ershov’s recursion 
theorem in this setting.

Our notation from computability theory is mostly standard. In the following, ϕn denotes the n-th partial 
computable (p.c.) function, in some standard numbering of the p.c. functions. Partial computable (p.c.) 
functions are denoted by lower case Greek letters, and (total) computable functions by lower case Roman 
letters. ω denotes the natural numbers. We denotes the domain of the p.c. function ϕe. We write ϕe(n) ↓ if 
this computation is defined, and ϕe(n) ↑ otherwise. We let 〈e, n〉 denote a computable pairing function. ∅′
denotes the halting set. For unexplained notions we refer to Odifreddi [21] or Soare [26].

2. Numberings and equivalence relations

The theory of numberings (also called numerations, after the German ‘Numerierung’) was initiated by 
Ershov. The following concepts were introduced by him in [8].

Definition 2.1. A numbering of a set S is a surjection γ : ω → S. Given γ, define an equivalence relation on 
ω by n ∼γ m if γ(n) = γ(m).

A numbering γ is precomplete if for every partial computable unary function ψ there exists a computable 
unary f such that for every n

ψ(n)↓ =⇒ f(n) ∼γ ψ(n). (1)

Following Visser, we say that f totalizes ψ modulo ∼γ if (1) holds.
A precomplete numbering γ is complete if there is a special element a∈ω such that next to (1) also 

f(n) ∼γ a for every n with ψ(n) ↑.

The prime example of a numbering is n �→ ϕn for the set of unary p.c. functions. This numbering is 
precomplete: by the S-m-n-theorem, for any p.c. ψ there is a (total) computable f such that ϕf(n) = ϕψ(n)
for every n such that ψ(n) ↓. The numbering is even complete: as required special element we can take an 
index of the totally undefined function.

The numbering n �→ Wn of the c.e. sets is closely related (and for our purposes below equivalent) to the 
numbering of the p.c. functions. It is also complete, with as special element the empty set.

Other examples of numberings come from λ-calculus. For example, the closed λ-terms, modulo β-equality, 
can be enumerated as a precomplete numbering,1 cf. Visser [30, p261,264], referring to Barendregt. If 
moreover unsolvable λ-terms are equated, then this numbering even becomes complete. Other examples can 
be found in [30], and still more examples come from pca’s, that we discuss in section 6 below.

Numberings and equivalence relations are mutually related [6]. For every numbering γ we have the 
corresponding equivalence ∼γ . Conversely, given an equivalence relation R on ω (or any other countable 
set), we have the numbering n �→ [n] of the equivalence classes of R. Hence the study of numberings is 
equivalent to that of (countable) equivalence relations. In particular we can also apply the terminology of 
Definition 2.1 to such relations, and talk about precomplete and complete equivalence relations.

A class of countable equivalence relations that is of particular interest is the class of computably enu-
merable equivalence relations, simply called ceers. These were studied by Ershov [9] in the context of the 
theory of numberings (though examples of them occurred earlier in the literature), and in early writings 

1 By γ(n) = Ecn, where E is a λ-term enumerating closed terms and cn is the n-th numeral adequately representing natural 
numbers in λ-calculus.
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were called positive equivalence relations. Bernardi and Sorbi [6] proved that every precomplete ceer is 
m-complete (even with an extra uniformity condition). They also showed that this implies 1-completeness 
[6, p532]. This result was later strengthened by Lachlan [18] (see also [1, p425]), who showed that all pre-
complete ceers are computably isomorphic. For a recent survey about ceers we refer the reader to Andrews, 
Badaev, and Sorbi [1].

An interesting example of a ceer (discussed in Bernardi and Sorbi [6, p534]) is the Lindenbaum algebra 
of PA (Peano arithmetic). Identify formulas ϕ and ψ in the language of PA with their Gödel numbers. Let 
ϕ ∼PA ψ if these formulas are provably equivalent in PA. Then ∼PA is obviously a ceer. This relation is not 
precomplete, as can be seen using Theorem 3.1 below: the function ϕ �→ ¬ϕ is computable, but does not 
have a fixed point modulo ∼PA. By contrast, the analogous ceer ∼Σn

, obtained by considering the fragment 
of PA of Σn-formulas, is precomplete, cf. Visser [30, p263].

3. The recursion theorem

Kleene’s recursion theorem [15] states that every computable function h has a fixed point, in the sense 
that there exists a number n such that ϕh(n) = ϕn. This result holds uniformly, meaning that the fixed 
point can be found computably from a code of h. For an extensive discussion of this fundamental theorem, 
and the many applications it has found in logic, see Moschovakis [20].

Using Ershov’s terminology, we can phrase Kleene’s result by saying that h has a fixed point modulo ∼γ , 
where γ is the numbering n �→ ϕn of the p.c. functions. Ershov showed that the recursion theorem holds 
for every precomplete numbering γ in the following way.

Theorem 3.1. (Ershov’s recursion theorem [10]) Let γ be a precomplete numbering, and let h be a computable 
function. Then h has a fixed point modulo ∼γ, i.e. there exists a number n such that h(n) ∼γ n.

As is the case for Kleene’s recursion theorem, this result holds uniformly. For later reference we explicitly 
state the following version:

Theorem 3.2. (Ershov’s recursion theorem with parameters) Let γ be a precomplete numbering, and let 
h(x, n) be a computable binary function. Then there exists a computable function f such that for all n, 
f(n) ∼γ h(f(n), n).

Proof. By precompleteness, let d be a computable function such that

d(x, n) ∼γ ϕx(x, n)

for every x and n where the latter is defined.2 Let e be a code such that ϕe(x, n) = h(d(x, n), n) for all x
and n. Then

d(e, n) ∼γ ϕe(e, n) = h(d(e, n), n),

so that d(e, n) is a fixed point for every n. �
Theorem 3.2 is equivalent with the following form, given in Andrews, Badaev, and Sorbi [1, p423].

2 Note that we can generalize precompleteness (Definition 2.1) to functions with multiple arguments, which is allowed by the 
usual coding of sequences.
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Theorem 3.3. Let γ be a precomplete numbering. There exists a computable function f such that for every n, 
if ϕn(f(n)) ↓ then

ϕn(f(n)) ∼γ f(n).

Theorem 3.2 and Theorem 3.3 are equivalent, for precomplete numberings. To see that Theorem 3.3
implies Theorem 3.2, observe that, given a computable function h as in the latter theorem, there is a 
computable function g such that ϕg(n)(x) = h(x, n) for every x and n. For f as in Theorem 3.3 we then 
have

h(f(g(n)), n) = ϕg(n)(f(g(n))) ∼γ f(g(n))

for every n, so f ◦ g is the desired computable function producing fixed points.
Conversely, Theorem 3.2 implies Theorem 3.3. By precompleteness of γ, there is a computable function 

h that totalizes the universal p.c. function modulo ∼γ , i.e. such that

ϕn(x)↓ =⇒ h(x, n) = ϕn(x)

for every x and n. Now Theorem 3.2 provides the required fixed points f(n).
The converse of Theorem 3.3 also holds. The statement of the theorem holds for a numbering γ if and 

only if γ is precomplete (cf. [1, p423]). Since the equivalence of Theorem 3.2 and Theorem 3.3 above uses 
that γ is precomplete, it is not clear whether the converse of Theorem 3.2 also holds. Hence we ask the 
following.

Question 3.4. Suppose that an arbitrary numbering γ satisfies the statement of Theorem 3.2. Does it follow 
that γ is precomplete?

4. The ADN theorem

The ADN theorem (Theorem 4.2 below) is an extension of the recursion theorem, proved in Visser [30]. 
It was motivated by developments in early proof theory, in particular Rosser’s extension of Gödel’s in-
completeness theorem. Visser mentions the work of Smoryński and Shepherdson’s fixed point as further 
motivation, cf. [25]. The analogy between the ADN theorem and Rosser’s theorem was neatly summarized 
in Barendregt [5] by the following mock equation.

Gödel
Rosser = recursion theorem

ADN theorem

The analogy is further illustrated by the proof of the ADN theorem below.
The ADN theorem has several interesting applications.

• Visser himself discusses some consequences of the ADN theorem for the λ-calculus in [30].
• Theorem 1 (about the m-completeness of precomplete ceers) in Bernardi and Sorbi [6] uses ω + 1

applications of the ADN theorem. The construction in the proof uses the ADN theorem ω times, plus 
one more for Lemma 2.

• Barendregt [5] uses the ADN theorem to prove a result of Statman.
• The notion of diagonal function used in the ADN theorem relates nicely to the concept of fixed point 

free function and similar concepts that figure prominently in computability theory, cf. the discussion 
below.
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Definition 4.1. A partial function δ is a diagonal function for the numbering γ if δ(x) �γ x for every x in 
the domain of δ.

N.B. Note that in this definition we do not require δ to be p.c., in contrast to the original definition 
in Visser [30]. This is because it is also interesting to discuss the Turing degrees of diagonal functions in 
general.

By Jockusch et al. [12], the Turing degrees of diagonal functions for the numberings n �→ ϕn and n �→ Wn

coincide. They also coincide with the degrees of diagonally noncomputable, or DNC, functions, i.e. functions 
g with g(e) 
= ϕe(e) for every e. Diagonal functions for the numbering n �→ Wn of the c.e. sets are called fixed 
point free (or simply FPF) in the literature. (Usually these are total functions, though in [27] and [28] also 
partial FPF functions were considered.) DNC and FPF functions play an important part in computability 
theory, for example in the work of Kučera [17]. See Astor [3] for a recent example of their use, or Downey 
and Hirschfeldt [7] for many more. They are also closely related to the study of complete extensions of 
Peano Arithmetic, see e.g. the work of Jockusch and Soare [13].

Theorem 4.2. (ADN theorem, Visser [30]) Let γ be a precomplete numbering, and suppose that δ is a partial 
computable diagonal function for γ. Then for every partial computable function ψ there exists a computable 
function f such that for every n,

ψ(n)↓ =⇒ f(n) ∼γ ψ(n) (2)

ψ(n)↑ =⇒ δ(f(n))↑ (3)

Definition 4.3. Note that (2) expresses that f totalizes ψ modulo ∼γ . If both (2) and (3) hold, we say that 
f totalizes ψ avoiding δ.

Note that the ADN theorem implies Ershov’s recursion theorem (Theorem 3.1). Indeed, suppose towards 
a contradiction that some total computable d has no fixed point modulo ∼γ . Then d is a total computable 
diagonal function. Then a p.c. function ψ with ψ(0) ↑ cannot be totalized modulo ∼γ avoiding d by any f , 
as we will not have d(f(0)) ↑, by the totality of d. This contradicts the ADN Theorem.

Proof of Theorem 4.2. We use Ershov’s recursion theorem with parameters (Theorem 3.2). Let η be p.c. 
such that for all x and n,

η(x, n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δ(x) if δ(x)↓ < ψ(n)↓ (by this we mean that the first stage at which δ(x) converges
is less than that of ψ(n), if the latter converges at all),

ψ(n) if ψ(n)↓ ≤ δ(x)↓,
↑ otherwise.

By precompleteness of γ, there is a computable function h that totalizes η modulo ∼γ . Let f be as in 
Ershov’s recursion theorem with parameters (Theorem 3.2). Then for every n,

f(n) ∼γ h(f(n), n) ∼γ η(f(n), n),

whenever the latter is defined. Now δ(f(n)) ↓ and f(n) ∼γ δ(f(n)) is impossible, since δ is a diagonal for γ, 
and hence f totalizes ψ avoiding δ. �

By taking ψ in Theorem 4.2 universal, we see that the following uniform version holds.
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Theorem 4.4. (ADN theorem, uniform version) Let γ be a precomplete numbering, and suppose that δ is a 
partial computable diagonal function for γ. Then there exists a computable function f such that for every 
fixed e the function f(〈e, n〉) totalizes ϕe avoiding δ.

Proof. Consider the universal function ψ(〈e, n〉) = ϕe(n). By Theorem 4.2, there exists a computable f that 
totalizes ψ avoiding δ. Hence

ψ(〈e, n〉) = ϕe(n)↓ =⇒ f(〈e, n〉) ∼γ ϕe(n)

ψ(〈e, n〉) = ϕe(n)↑ =⇒ δ(f(〈e, n〉))↑,

and therefore f(〈e, n〉) totalizes ϕe avoiding δ. �
Theorem 4.4 shows that Theorem 4.2 is uniform in a code of ψ. A careful reading of the proof of the 

ADN theorem above shows that it is also uniform in a code d of δ.3 It is shown in Terwijn [28] that (for the 
numbering n �→ Wn) neither Arslanov’s completeness criterion nor the ADN theorem have a version with 
parameters analogous to the recursion theorem with parameters. (Note that the ADN theorem is in a way 
a contrapositive formulation of the recursion theorem, so that some care is needed in how to formulate the 
parameterized version.) A fortiori, the same holds in the context of arbitrary precomplete numberings.

5. Arslanov’s completeness criterion for precomplete numberings

Arslanov’s completeness criterion [2] states that a c.e. set A is Turing complete if and only if A can 
compute a FPF function, i.e. a function f such that Wf(n) 
= Wn for every n. Note that this vastly extends 
Kleene’s recursion theorem, namely from computable sets to incomplete c.e. sets. The condition that A is 
c.e. is necessary, as by the low basis theorem [14] there exist FPF functions of low Turing degree.

In the next theorem we formulate Arslanov’s completeness criterion for arbitrary precomplete numberings. 
The usual version of the completeness criterion corresponds to the case where γ is the standard numbering 
of the c.e. sets n �→ Wn. (Or equivalently, by the aforementioned result of Jockusch et al. [12], the numbering 
of the p.c. functions n �→ ϕn.) Below, ∅′ denotes the halting set, and ∅′s denotes its s-step approximation.

Theorem 5.1. Suppose γ is a precomplete numbering, and A <T ∅′ is an incomplete c.e. set. If g is an 
A-computable function, then g has a fixed point modulo γ, i.e. there exists n∈ω such that g(n) ∼γ n.

Proof. The following proof is a modification of the proof in Soare [26].
Since g ≤T ∅′, by Shoenfield’s limit lemma [24] there is a computable approximation ĝ such that

g(n) = lim
s→∞

ĝ(n, s)

for every n. Because A is c.e., this approximation has a modulus m ≤T A, that is, for all s ≥ m(n) we have 
g(n) = ĝ(n, s). Now let η be partial computable such that

η(x, n) =
{
ĝ(x, sn) if sn is the least number s such that n∈∅′s,
↑ if such s does not exist.

By the precompleteness of γ, let h be a computable function that totalizes η modulo ∼γ , so that h(x, n) ∼γ

η(x, n) whenever the latter is defined. By Ershov’s recursion theorem with parameters (Theorem 3.2), let 

3 This means that there is a computable function f = f(d, n) such that, if δ = ϕd is a diagonal function for γ, then f(d, n)
totalizes ψ avoiding δ.
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f be a computable function such that f(n) ∼γ h(f(n), n) for every n. In particular we have f(n) ∼γ

η(f(n), n) ∼γ ĝ(f(n), sn) when n∈∅′.
We claim that there exists n∈∅′ such that ĝ(f(n), sn) = g(f(n)), so that f(n) is a fixed point of g. 

Otherwise we would have that for every n, if n∈∅′ then ĝ(f(n), sn) 
= g(f(n)), and hence m(f(n)) > sn. It 
follows that n∈∅′ ⇔ n∈∅′m(f(n)), and hence ∅′ ≤T A, contrary to assumption. �

A joint generalization of the ADN theorem and Arslanov’s completeness criterion for the numbering 
n �→ Wn of the c.e. sets was given in Terwijn [27]. At this point it is not clear that the proof in [27]
generalizes to arbitrary precomplete numberings, though we conjecture that it is possible to adapt the 
proof.

Question 5.2. Does the joint generalization Theorem 5.1 in [27] hold for arbitrary precomplete numberings?

6. Numberings and partial combinatory algebra

In this section we discuss the relation of the theory of numberings with partial combinatory algebra. 
Combinatory algebra was introduced by Schönfinkel [23], and partial combinatory algebra in Feferman [11]. 
We begin by repeating some relevant definitions. A fuller account of partial combinatory algebra can be 
found in van Oosten [22], from which we also borrow some of the terminology.

A partial applicative structure (pas) is a set A together with a partial map from A ×A to A. We denote 
the image of (a, b), if it is defined, by ab, and think of this as ‘a applied to b’. If this is defined we denote this 
by ab ↓. By convention, application associates to the left. We write abc instead of (ab)c. Terms over A are 
built from elements of A, variables, and application. If t1 and t2 are terms then so is t1t2. If t(x1, . . . , xn) is a 
term with variables xi, and a1, . . . , an∈A, then t(a1, . . . , an) is the term obtained by substituting the ai for 
the xi. For closed terms (i.e. terms without variables) t and s, we write t � s if either both are undefined, or 
both are defined and equal. Here application is strict in the sense that for t1t2 to be defined, it is necessary 
(but not sufficient) that both t1, t2 are defined. We say that an element f∈A is total if fa ↓ for every a∈A.

Definition 6.1. A partial applicative structure A is combinatory complete if for any term t(x1, . . . , xn, x), 
with free variables among x1, . . . , xn, x and 0 ≤ n, there exists a b∈A such that for all a1, . . . , an, a∈A,

(i) ba1 · · · an ↓,
(ii) ba1 · · · ana � t(a1, . . . , an, a).

A pas A is a partial combinatory algebra (pca) if it is combinatory complete.

The property of combinatory completeness allows for the following definition in any pca.4 For every term 
t(x1, . . . , xn, x), 0 ≤ n, with free variables among x1, . . . , xn, x, one can explicitly define a term λ∗x.t with 
variables among x1, . . . , xn, with the property that for all a1, . . . , an, a∈A,

(i) (λ∗x.t)(a1, . . . , an) ↓,
(ii) (λ∗x.t)(a1, . . . , an)a � t(a1, . . . , an, a).

This is noted in Feferman [11, p95], and makes use of the Curry combinators k and s familiar from com-
binatory logic. In fact, for any pas, the existence of such combinators is equivalent to being a pca [22, 
p3].

4 Because the lambda-terms in combinatory algebra do not have the same substitution properties as in the lambda calculus, we 
use the notation λ∗ rather than λ.
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The prime example of a pca is Kleene’s first model K1, consisting of ω, with application defined by 
nm = ϕn(m). This structure is combinatory complete by the S-m-n-theorem. However, there are many 
other examples, including uncountable structures, see Section 1.4 of [22].

Another important example of a pca is Kleene’s second model K2 [16]. This is a pca defined on Baire 
space ωω (often informally referred to as the ‘reals’), with application defined by coding partial continuous 
functionals by reals. The application αβ is then the result of applying the functional with code α to the 
real β. We will use this model below in section 7. It also plays an important role in the theory of realizability 
and higher-order computability. For a more elaborate discussion see for example Longley and Normann [19].

The structures K1 and K2 can also be considered as total combinatory algebras if one restricts them 
to combinators corresponding to λI-calculus, in which the formation of λx.M only is allowed if x is a free 
variable of M , see Barendregt [4, Exercises 9.5.13-14].

We note the following about the pca K1.

• The notion of precompleteness (1) generalizes the property that one can totalize any p.c. function ψ on 
codes. This property gives Ershov’s form of the recursion theorem (Theorem 3.1).

• Pca’s generalize the applicative structure of nm = ϕn(m). The property of combinatory completeness 
may be seen as an abstraction of Kleene’s S-m-n-theorem. This property also gives rise to a fixed point 
theorem (due to Feferman), see Theorem 6.2 below.

These two generalizations of properties of Kleene’s model are more or less orthogonal. For numberings, 
there is no notion of application, and pca’s need not be countable.

The following is Feferman’s form of the recursion theorem in pca’s, inspired by the fixed point theorem 
in combinatory logic.

Theorem 6.2. (Feferman’s recursion theorem [11]) Let A be a pca. Then there exists f∈A such that for all 
g∈A

g(fg) � fg.

Comparing this to Ershov’s recursion theorem (in the form of Theorem 3.3), we see that Feferman’s 
version is more general in that it applies to arbitrary pca’s, but that it is also weaker in that the ‘function’ 
f giving the fixed point fg does not have to be total.5 In some cases f may be total (as for example in 
Theorem 3.3, or in the case that A is a combinatory algebra, i.e. a pca in which application is total), but 
in general f cannot be total. This is obviously the case when the pca has a totally undefined element g.6
We will comment further on this at the end of section 7.

We now proceed by showing how a combination of the fixed point theorems of Ershov and Feferman can 
be obtained. We extend the notions of numbering and precompleteness of numberings from ω to arbitrary 
pca’s as follows.

Definition 6.3. Suppose that A is a pca, S is a set, and γ : A → S is surjective. We call γ a (generalized) 
numbering. Define an equivalence relation on A by a ∼γ b if γ(a) = γ(b).

5 There is a second version of the recursion theorem for pca’s in [22], namely that there is a term f∈A such that fg ↓ for every 
g, and such that g(fg)a � fga for every a∈A. Since f is total, this version does imply Theorem 3.3, but only for the special case 
of the numbering n 	→ ϕn.
6 This is in fact the case in every nontotal combinatory algebra. As soon as there is one application ab that is undefined, A has 

a totally undefined element, namely f = λ∗x.ab = s(ka)(kb). In this case f clearly satisfies Theorem 6.2. Although the theorem is 
thus quite weak as an extension from combinatory algebra, its use for us is that it suggests the generalization of Ershov’s recursion 
theorem to pca’s that we prove below (Theorem 6.5).

An alternative formulation of the recursion theorem in pca’s, analogous to Theorem 3.3, would be: There exists a total f∈A
such that for all g∈A, if g(fg) ↓ then g(fg) ∼ fg. This, however, does not hold in general by Proposition 7.3 below.
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Call γ precomplete if for every term t(x) with one variable x, there exists a total element f∈A such that

t(a)↓ =⇒ fa ∼γ t(a) (4)

for every a∈A. In this case, we say that f totalizes t modulo ∼γ .
As before, we say that a generalized precomplete numbering γ is complete if there is a special element 

c∈A such that in addition to (4), fa ∼γ c for every a with t(a) ↑.

Lemma 6.4. Let A be a pca, and let γ : A → S be a generalized numbering. Then the following are equivalent.

(i) γ is precomplete.
(ii) For every b∈A there exists a total element f∈A such that for all a∈A,

ba↓ =⇒ fa ∼γ ba.

(iii) For every b∈A there exists a total element f∈A such that for all n∈ω and �a = a1, . . . , an∈A,

b�a↓ =⇒ f�a ∼γ b�a.

Proof. (i) ⇒ (ii). Apply (i) to the term bx.
(ii) ⇒ (iii). With the use of the λ∗-terms defined above for any pca, n-tuples a1, . . . , an can be coded 

as a single element 〈a1, . . . , an〉 = λ∗z.za1 . . . ak, from which each ai can be decoded. Indeed, for Un
i =

λ∗u1 . . . un.ui we have

〈a1, . . . , an〉Un
i = ai.

Now given n, b define b′ = λ∗z.b(zUn
1 ) · · · (zUn

n). Let f ′ totalize b′ modulo γ. Then f = λ∗x1 . . . xn.f
′〈x1, . . . ,

xn〉 totalizes b: if ba1 · · · an ↓, then

fa1 · · · an = f ′〈a1, . . . , an〉
∼γ b′〈a1, . . . , an〉
= b(〈a1, . . . , an〉Un

1 ) · · · (〈a1, . . . , an〉Un
n)

= ba1 · · · an.

(iii) ⇒ (i). Given term t(x), apply (iii) with n=1 to b=λ∗x.t(x). �
By Lemma 6.4, the notion of precompleteness from Definition 2.1 is a special case of Definition 6.3, namely 

the case where A is the pca K1, with application nm = ϕn(m). Hence we see that Ershov’s recursion theorem 
(Theorem 3.3) is a special case of the following theorem.

Theorem 6.5. Suppose A is a pca, and that γ : A → S is a precomplete numbering. Then there exists a total 
f∈A such that for all g∈A, if g(fg) ↓ then

g(fg) ∼γ fg.

Proof. The proof mimics Θ = (λ∗xy.y(xxy))(λ∗xy.y(xxy)), the fixed point operator of Turing [29]. Let 
t(x, y) = y(xxy). By Lemma 6.4 there is a u∈A that totalizes the term t(x, y) modulo ∼γ . Then uab ↓, for 
all a, b∈A, and b(aab) ↓ implies uab ∼γ b(aab). Take f = uu. Then f is total, because uua ↓ for every a∈A. 
Suppose for a g∈A one has g(fg) ↓. Then g(uug) ↓ and
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fg = uug

∼γ g(uug)

= g(fg). �
In order to combine the fixed point theorems of Ershov and Feferman, we have extended the definition 

of numberings to pca’s. It could also be interesting to investigate how much of the theory can be expressed 
in terms of realizability toposes derived from the pca’s, cf. [22].

7. Combinatory completeness and precompleteness

With every pca A we have an associated generalized numbering γA : A → A, which is just the identity. 
We will discuss the relation between combinatory completeness of A and the precompleteness of γA.

Combinatory completeness is the property in pca’s analogous to the S-m-n-theorem, and precompleteness 
of (generalized) numberings (Definition 6.3) generalizes the property that every p.c. function can be totalized 
modulo equivalence of codes, i.e. that the numbering n �→ ϕn is precomplete. Now the latter fact is proved 
using the S-m-n-theorem, so one might think that perhaps the property of combinatory completeness of a 
pca A implies that of precompleteness of the associated numbering γA. We now show that this is not the 
case, and hence that the assumption of precompleteness in Theorem 6.5 is not superfluous. Recall Kleene’s 
second model K2 from section 6.

Proposition 7.1. Kleene’s second model K2 is not precomplete, meaning that its associated generalized num-
bering γK2 is not precomplete.

Proof. According to Lemma 6.4, we have to prove that there is a partial continuous functional ψ : ωω → ωω

that does not have a total continuous extension. For every finite string σ∈ω<ω, denote by [σ] the basic open 
set consisting of all X∈ωω that have σ as an initial segment. Now define ψ on every basic open [0n1] by 
mapping it continuously to [0n1] if n is even, and to [10n−1] if n is odd. We let ψ be undefined on the rest 
of ωω. Then ψ is continuous on its domain. Now consider the all zero sequence 0ω, and suppose that f is 
a total continuous extension of ψ. Since the reals 0n10ω converge to 0ω for n → ∞, their images under f

should converge to f(0ω). But for even n, f(0n10ω) tends to 0ω, and for odd n it tends to 10ω. Hence every 
continuous extension f of ψ must have both f(0ω) = 0ω and f(0ω) = 10ω, which is impossible. �
Corollary 7.2. Combinatory completeness of a pca A does not imply precompleteness of the associated num-
bering γA.

Proof. As K2 is a pca, this is immediate from Proposition 7.1. �
We already noted that in general it is not possible to have the f in Feferman’s recursion theorem 

(Theorem 6.2) total. For K2, we can in fact say a bit more.

Proposition 7.3. In Kleene’s second model K2, for every total element f there exists a total element g such 
that g(fg) 
� fg.

Proof. Given the code f of a total continuous functional on ωω, we define a total continuous functional g
such that g(fg) 
� fg.

The particulars of the coding of K2 are not essential to the proof. (The interested reader can find them 
in Longley and Normann [19].) What is needed is that if fg ↓, this computation uses only a finite part of 
the coding of g (this is precisely what it means for f to be continuous on its domain), and further that the 
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code of an element g can be equal to an initial part of the code of the totally undefined function, and later 
become defined on a given number. Informally, the strategy to define g is then as follows. First let g be 
totally undefined, until fg commits to a certain value on (fg)(0). This has to happen since f is total. We 
can then diagonalize by letting the value (g(fg))(0) be different from (fg)(0), as well as make g total. �

Note that Proposition 7.3 gives another proof of Proposition 7.1. Namely, if K2 were precomplete, then 
by Theorem 6.5 there would be a total element f producing the fixed points, contradicting Proposition 7.3.
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