22,803 research outputs found

    Fixed Point Polynomials of Permutation Groups

    Get PDF
    In this paper we study, given a group GG of permutations of a finite set, the so-called fixed point polynomial i=0nfixi\sum_{i=0}^{n}f_{i}x^{i}, where fif_{i} is the number of permutations in GG which have exactly ii fixed points. In particular, we investigate how root location relates to properties of the permutation group. We show that for a large family of such groups most roots are close to the unit circle and roughly uniformly distributed round it. We prove that many families of such polynomials have few real roots. We show that many of these polynomials are irreducible when the group acts transitively. We close by indicating some future directions of this research. A corrigendum was appended to this paper on 10th October 2014. </jats:p

    Recognizing Graph Theoretic Properties with Polynomial Ideals

    Get PDF
    Many hard combinatorial problems can be modeled by a system of polynomial equations. N. Alon coined the term polynomial method to describe the use of nonlinear polynomials when solving combinatorial problems. We continue the exploration of the polynomial method and show how the algorithmic theory of polynomial ideals can be used to detect k-colorability, unique Hamiltonicity, and automorphism rigidity of graphs. Our techniques are diverse and involve Nullstellensatz certificates, linear algebra over finite fields, Groebner bases, toric algebra, convex programming, and real algebraic geometry.Comment: 20 pages, 3 figure

    Billey's formula in combinatorics, geometry, and topology

    Get PDF
    In this expository paper we describe a powerful combinatorial formula and its implications in geometry, topology, and algebra. This formula first appeared in the appendix of a book by Andersen, Jantzen, and Soergel. Sara Billey discovered it independently five years later, and it played a prominent role in her work to evaluate certain polynomials closely related to Schubert polynomials. Billey's formula relates many pieces of Schubert calculus: the geometry of Schubert varieties, the action of the torus on the flag variety, combinatorial data about permutations, the cohomology of the flag variety and of the Schubert varieties, and the combinatorics of root systems (generalizing inversions of a permutation). Combinatorially, Billey's formula describes an invariant of pairs of elements of a Weyl group. On its face, this formula is a combination of roots built from subwords of a fixed word. As we will see, it has deeper geometric and topological meaning as well: (1) It tells us about the tangent spaces at each permutation flag in each Schubert variety. (2) It tells us about singular points in Schubert varieties. (3) It tells us about the values of Kostant polynomials. Billey's formula also reflects an aspect of GKM theory, which is a way of describing the torus-equivariant cohomology of a variety just from information about the torus-fixed points in the variety. This paper will also describe some applications of Billey's formula, including concrete combinatorial descriptions of Billey's formula in special cases, and ways to bootstrap Billey's formula to describe the equivariant cohomology of subvarieties of the flag variety to which GKM theory does not apply.Comment: 14 pages, presented at the International Summer School and Workshop on Schubert Calculus in Osaka, Japan, 201

    Bivariate polynomial mappings associated with simple complex Lie algebras

    Full text link
    There are three families of bivariate polynomial maps associated with the rank-22 simple complex Lie algebras A2,B2C2A_2, B_2 \cong C_2 and G2G_2. It is known that the bivariate polynomial map associated with A2A_2 induces a permutation of Fq2\mathbf{F}_q^2 if and only if gcd(k,qs1)=1\gcd(k,q^s-1)=1 for s=1,2,3s=1, 2, 3. In this paper, we give similar criteria for the other two families. As an application, a counterexample is given to a conjecture posed by Lidl and Wells about the generalized Schur's problem.Comment: 16 pages, 6 figure

    Lower bounds for Kazhdan-Lusztig polynomials from patterns

    Full text link
    We give a lower bound for the value at q=1 of a Kazhdan-Lustig polynomial in a Weyl group W in terms of "patterns''. This is expressed by a "pattern map" from W to W' for any parabloic subgroup W'. This notion generalizes the concept of patterns and pattern avoidance for permutations to all Weyl groups. The main tool of the proof is a "hyperbolic localization" on intersection cohomology; see the related paper http://front.math.ucdavis.edu/math.AG/0202251Comment: 14 pages; updated references. Final version; will appear in Transformation Groups vol.8, no.
    corecore