237 research outputs found

    Combinatorial Mesh Optimization

    Get PDF
    International audienceA new mesh optimization framework for 3D triangular surface meshes is presented, which formulates the task as an energy minimization problem in the same spirit as in Hoppe et al. (SIGGRAPH’93: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, 1993). The desired mesh properties are controlled through a global energy function including data attached terms measuring the fidelity to the original mesh, shape potentials favoring high quality triangles, and connectivity as well as budget terms controlling the sampling density. The optimization algorithm modifies mesh connectivity as well as the vertex positions. Solutions for the vertex repositioning step are obtained by a discrete graph cut algorithm examining global combinations of local candidates.Results on various 3D meshes compare favorably to recent state-of-the-art algorithms. Applications consist in optimizing triangular meshes and in simplifying meshes, while maintaining high mesh quality. Targeted areas are the improvement of the accuracy of numerical simulations, the convergence of numerical schemes, improvements of mesh rendering (normal field smoothness) or improvements of the geometric prediction in mesh compression technique

    Quad Meshing

    Get PDF
    Triangle meshes have been nearly ubiquitous in computer graphics, and a large body of data structures and geometry processing algorithms based on them has been developed in the literature. At the same time, quadrilateral meshes, especially semi-regular ones, have advantages for many applications, and significant progress was made in quadrilateral mesh generation and processing during the last several years. In this State of the Art Report, we discuss the advantages and problems of techniques operating on quadrilateral meshes, including surface analysis and mesh quality, simplification, adaptive refinement, alignment with features, parametrization, and remeshing

    Principal component and Voronoi skeleton alternatives for curve reconstruction from noisy point sets

    Get PDF
    Surface reconstruction from noisy point samples must take into consideration the stochastic nature of the sample -- In other words, geometric algorithms reconstructing the surface or curve should not insist in following in a literal way each sampled point -- Instead, they must interpret the sample as a “point cloud” and try to build the surface as passing through the best possible (in the statistical sense) geometric locus that represents the sample -- This work presents two new methods to find a Piecewise Linear approximation from a Nyquist-compliant stochastic sampling of a quasi-planar C1 curve C(u) : R → R3, whose velocity vector never vanishes -- One of the methods articulates in an entirely new way Principal Component Analysis (statistical) and Voronoi-Delaunay (deterministic) approaches -- It uses these two methods to calculate the best possible tape-shaped polygon covering the planarised point set, and then approximates the manifold by the medial axis of such a polygon -- The other method applies Principal Component Analysis to find a direct Piecewise Linear approximation of C(u) -- A complexity comparison of these two methods is presented along with a qualitative comparison with previously developed ones -- It turns out that the method solely based on Principal Component Analysis is simpler and more robust for non self-intersecting curves -- For self-intersecting curves the Voronoi-Delaunay based Medial Axis approach is more robust, at the price of higher computational complexity -- An application is presented in Integration of meshes originated in range images of an art piece -- Such an application reaches the point of complete reconstruction of a unified mes

    Gap Processing for Adaptive Maximal Poisson-Disk Sampling

    Full text link
    In this paper, we study the generation of maximal Poisson-disk sets with varying radii. First, we present a geometric analysis of gaps in such disk sets. This analysis is the basis for maximal and adaptive sampling in Euclidean space and on manifolds. Second, we propose efficient algorithms and data structures to detect gaps and update gaps when disks are inserted, deleted, moved, or have their radius changed. We build on the concepts of the regular triangulation and the power diagram. Third, we will show how our analysis can make a contribution to the state-of-the-art in surface remeshing.Comment: 16 pages. ACM Transactions on Graphics, 201

    Man-made Surface Structures from Triangulated Point Clouds

    Get PDF
    Photogrammetry aims at reconstructing shape and dimensions of objects captured with cameras, 3D laser scanners or other spatial acquisition systems. While many acquisition techniques deliver triangulated point clouds with millions of vertices within seconds, the interpretation is usually left to the user. Especially when reconstructing man-made objects, one is interested in the underlying surface structure, which is not inherently present in the data. This includes the geometric shape of the object, e.g. cubical or cylindrical, as well as corresponding surface parameters, e.g. width, height and radius. Applications are manifold and range from industrial production control to architectural on-site measurements to large-scale city models. The goal of this thesis is to automatically derive such surface structures from triangulated 3D point clouds of man-made objects. They are defined as a compound of planar or curved geometric primitives. Model knowledge about typical primitives and relations between adjacent pairs of them should affect the reconstruction positively. After formulating a parametrized model for man-made surface structures, we develop a reconstruction framework with three processing steps: During a fast pre-segmentation exploiting local surface properties we divide the given surface mesh into planar regions. Making use of a model selection scheme based on minimizing the description length, this surface segmentation is free of control parameters and automatically yields an optimal number of segments. A subsequent refinement introduces a set of planar or curved geometric primitives and hierarchically merges adjacent regions based on their joint description length. A global classification and constraint parameter estimation combines the data-driven segmentation with high-level model knowledge. Therefore, we represent the surface structure with a graphical model and formulate factors based on likelihood as well as prior knowledge about parameter distributions and class probabilities. We infer the most probable setting of surface and relation classes with belief propagation and estimate an optimal surface parametrization with constraints induced by inter-regional relations. The process is specifically designed to work on noisy data with outliers and a few exceptional freeform regions not describable with geometric primitives. It yields full 3D surface structures with watertightly connected surface primitives of different types. The performance of the proposed framework is experimentally evaluated on various data sets. On small synthetically generated meshes we analyze the accuracy of the estimated surface parameters, the sensitivity w.r.t. various properties of the input data and w.r.t. model assumptions as well as the computational complexity. Additionally we demonstrate the flexibility w.r.t. different acquisition techniques on real data sets. The proposed method turns out to be accurate, reasonably fast and little sensitive to defects in the data or imprecise model assumptions.Künstliche Oberflächenstrukturen aus triangulierten Punktwolken Ein Ziel der Photogrammetrie ist die Rekonstruktion der Form und Größe von Objekten, die mit Kameras, 3D-Laserscannern und anderern räumlichen Erfassungssystemen aufgenommen wurden. Während viele Aufnahmetechniken innerhalb von Sekunden triangulierte Punktwolken mit Millionen von Punkten liefern, ist deren Interpretation gewöhnlicherweise dem Nutzer überlassen. Besonders bei der Rekonstruktion künstlicher Objekte (i.S.v. engl. man-made = „von Menschenhand gemacht“ ist man an der zugrunde liegenden Oberflächenstruktur interessiert, welche nicht inhärent in den Daten enthalten ist. Diese umfasst die geometrische Form des Objekts, z.B. quaderförmig oder zylindrisch, als auch die zugehörigen Oberflächenparameter, z.B. Breite, Höhe oder Radius. Die Anwendungen sind vielfältig und reichen von industriellen Fertigungskontrollen über architektonische Raumaufmaße bis hin zu großmaßstäbigen Stadtmodellen. Das Ziel dieser Arbeit ist es, solche Oberflächenstrukturen automatisch aus triangulierten Punktwolken von künstlichen Objekten abzuleiten. Sie sind definiert als ein Verbund ebener und gekrümmter geometrischer Primitive. Modellwissen über typische Primitive und Relationen zwischen Paaren von ihnen soll die Rekonstruktion positiv beeinflussen. Nachdem wir ein parametrisiertes Modell für künstliche Oberflächenstrukturen formuliert haben, entwickeln wir ein Rekonstruktionsverfahren mit drei Verarbeitungsschritten: Im Rahmen einer schnellen Vorsegmentierung, die lokale Oberflächeneigenschaften berücksichtigt, teilen wir die gegebene vermaschte Oberfläche in ebene Regionen. Unter Verwendung eines Schemas zur Modellauswahl, das auf der Minimierung der Beschreibungslänge beruht, ist diese Oberflächensegmentierung unabhängig von Kontrollparametern und liefert automatisch eine optimale Anzahl an Regionen. Eine anschließende Verbesserung führt eine Menge von ebenen und gekrümmten geometrischen Primitiven ein und fusioniert benachbarte Regionen hierarchisch basierend auf ihrer gemeinsamen Beschreibungslänge. Eine globale Klassifikation und bedingte Parameterschätzung verbindet die datengetriebene Segmentierung mit hochrangigem Modellwissen. Dazu stellen wir die Oberflächenstruktur in Form eines graphischen Modells dar und formulieren Faktoren basierend auf der Likelihood sowie auf apriori Wissen über die Parameterverteilungen und Klassenwahrscheinlichkeiten. Wir leiten die wahrscheinlichste Konfiguration von Flächen- und Relationsklassen mit Hilfe von Belief-Propagation ab und schätzen eine optimale Oberflächenparametrisierung mit Bedingungen, die durch die Relationen zwischen benachbarten Primitiven induziert werden. Der Prozess ist eigens für verrauschte Daten mit Ausreißern und wenigen Ausnahmeregionen konzipiert, die nicht durch geometrische Primitive beschreibbar sind. Er liefert wasserdichte 3D-Oberflächenstrukturen mit Oberflächenprimitiven verschiedener Art. Die Leistungsfähigkeit des vorgestellten Verfahrens wird an verschiedenen Datensätzen experimentell evaluiert. Auf kleinen, synthetisch generierten Oberflächen untersuchen wir die Genauigkeit der geschätzten Oberflächenparameter, die Sensitivität bzgl. verschiedener Eigenschaften der Eingangsdaten und bzgl. Modellannahmen sowie die Rechenkomplexität. Außerdem demonstrieren wir die Flexibilität bzgl. verschiedener Aufnahmetechniken anhand realer Datensätze. Das vorgestellte Rekonstruktionsverfahren erweist sich als genau, hinreichend schnell und wenig anfällig für Defekte in den Daten oder falsche Modellannahmen

    Robust and parallel mesh reconstruction from unoriented noisy points.

    Get PDF
    Sheung, Hoi.Thesis (M.Phil.)--Chinese University of Hong Kong, 2009.Includes bibliographical references (p. 65-70).Abstract also in Chinese.Abstract --- p.vAcknowledgements --- p.ixList of Figures --- p.xiiiList of Tables --- p.xvChapter 1 --- Introduction --- p.1Chapter 1.1 --- Main Contributions --- p.3Chapter 1.2 --- Outline --- p.3Chapter 2 --- Related Work --- p.5Chapter 2.1 --- Volumetric reconstruction --- p.5Chapter 2.2 --- Combinatorial approaches --- p.6Chapter 2.3 --- Robust statistics in surface reconstruction --- p.6Chapter 2.4 --- Down-sampling of massive points --- p.7Chapter 2.5 --- Streaming and parallel computing --- p.7Chapter 3 --- Robust Normal Estimation and Point Projection --- p.9Chapter 3.1 --- Robust Estimator --- p.9Chapter 3.2 --- Mean Shift Method --- p.11Chapter 3.3 --- Normal Estimation and Projection --- p.11Chapter 3.4 --- Moving Least Squares Surfaces --- p.14Chapter 3.4.1 --- Step 1: local reference domain --- p.14Chapter 3.4.2 --- Step 2: local bivariate polynomial --- p.14Chapter 3.4.3 --- Simpler Implementation --- p.15Chapter 3.5 --- Robust Moving Least Squares by Forward Search --- p.16Chapter 3.6 --- Comparison with RMLS --- p.17Chapter 3.7 --- K-Nearest Neighborhoods --- p.18Chapter 3.7.1 --- Octree --- p.18Chapter 3.7.2 --- Kd-Tree --- p.19Chapter 3.7.3 --- Other Techniques --- p.19Chapter 3.8 --- Principal Component Analysis --- p.19Chapter 3.9 --- Polynomial Fitting --- p.21Chapter 3.10 --- Highly Parallel Implementation --- p.22Chapter 4 --- Error Controlled Subsampling --- p.23Chapter 4.1 --- Centroidal Voronoi Diagram --- p.23Chapter 4.2 --- Energy Function --- p.24Chapter 4.2.1 --- Distance Energy --- p.24Chapter 4.2.2 --- Shape Prior Energy --- p.24Chapter 4.2.3 --- Global Energy --- p.25Chapter 4.3 --- Lloyd´ةs Algorithm --- p.26Chapter 4.4 --- Clustering Optimization and Subsampling --- p.27Chapter 5 --- Mesh Generation --- p.29Chapter 5.1 --- Tight Cocone Triangulation --- p.29Chapter 5.2 --- Clustering Based Local Triangulation --- p.30Chapter 5.2.1 --- Initial Surface Reconstruction --- p.30Chapter 5.2.2 --- Cleaning Process --- p.32Chapter 5.2.3 --- Comparisons --- p.33Chapter 5.3 --- Computing Dual Graph --- p.34Chapter 6 --- Results and Discussion --- p.37Chapter 6.1 --- Results of Mesh Reconstruction form Noisy Point Cloud --- p.37Chapter 6.2 --- Results of Clustering Based Local Triangulation --- p.47Chapter 7 --- Conclusions --- p.55Chapter 7.1 --- Key Contributions --- p.55Chapter 7.2 --- Factors Affecting Our Algorithm --- p.55Chapter 7.3 --- Future Work --- p.56Chapter A --- Building Neighborhood Table --- p.59Chapter A.l --- Building Neighborhood Table in Streaming --- p.59Chapter B --- Publications --- p.63Bibliography --- p.6
    • …
    corecore