2,405 research outputs found

    On the streaming model for redshift-space distortions

    Full text link
    The streaming model describes the mapping between real and redshift space for 2-point clustering statistics. Its key element is the probability density function (PDF) of line-of-sight pairwise peculiar velocities. Following a kinetic-theory approach, we derive the fundamental equations of the streaming model for ordered and unordered pairs. In the first case, we recover the classic equation while we demonstrate that modifications are necessary for unordered pairs. We then discuss several statistical properties of the pairwise velocities for DM particles and haloes by using a suite of high-resolution NN-body simulations. We test the often used Gaussian ansatz for the PDF of pairwise velocities and discuss its limitations. Finally, we introduce a mixture of Gaussians which is known in statistics as the generalised hyperbolic distribution and show that it provides an accurate fit to the PDF. Once inserted in the streaming equation, the fit yields an excellent description of redshift-space correlations at all scales that vastly outperforms the Gaussian and exponential approximations. Using a principal-component analysis, we reduce the complexity of our model for large redshift-space separations. Our results increase the robustness of studies of anisotropic galaxy clustering and are useful for extending them towards smaller scales in order to test theories of gravity and interacting dark-energy models.Comment: 22 pages, 20 figures, accepted for publication in MNRA

    On the use of the l(2)-norm for texture analysis of polarimetric SAR data

    Get PDF
    In this paper, the use of the l2-norm, or Span, of the scattering vectors is suggested for texture analysis of polarimetric synthetic aperture radar (SAR) data, with the benefits that we need neither an analysis of the polarimetric channels separately nor a filtering of the data to analyze the statistics. Based on the product model, the distribution of the l2-norm is studied. Closed expressions of the probability density functions under the assumptions of several texture distributions are provided. To utilize the statistical properties of the l2-norm, quantities including normalized moments and log-cumulants are derived, along with corresponding estimators and estimation variances. Results on both simulated and real SAR data show that the use of statistics based on the l2-norm brings advantages in several aspects with respect to the normalized intensity moments and matrix variate log-cumulants.Peer ReviewedPostprint (published version

    Statistical applications of the multivariate skew-normal distribution

    Full text link
    Azzalini & Dalla Valle (1996) have recently discussed the multivariate skew-normal distribution which extends the class of normal distributions by the addition of a shape parameter. The first part of the present paper examines further probabilistic properties of the distribution, with special emphasis on aspects of statistical relevance. Inferential and other statistical issues are discussed in the following part, with applications to some multivariate statistics problems, illustrated by numerical examples. Finally, a further extension is described which introduces a skewing factor of an elliptical density.Comment: full-length version of the published paper, 32 pages, with 7 figures, uses psfra

    Condensation and Metastability in the 2D Potts Model

    Full text link
    For the first order transition of the Ising model below TcT_c, Isakov has proven that the free energy possesses an essential singularity in the applied field. Such a singularity in the control parameter, anticipated by condensation theory, is believed to be a generic feature of first order transitions, but too weak to be observable. We study these issues for the temperature driven transition of the qq states 2D Potts model at q>qc=4q>q_c=4. Adapting the droplet model to this case, we relate its parameters to the critical properties at qcq_c and confront the free energy to the many informations brought by previous works. The essential singularity predicted at the transition temperature leads to observable effects in numerical data. On a finite lattice, a metastability domain of temperatures is identified, which shrinks to zero in the thermodynamical limit. ~Comment: 32 pages, 6 figures, Late

    Low-temperature properties of some disordered systems from the statistical properties of nearly degenerate two-level excitations

    Full text link
    The thermal fluctuations that exist at very low temperature in disordered systems are often attributed to the existence of some two-level excitations. In this paper, we revisit this question via the explicit studies of the following 1D models (i) a particle in 1D random potentials (ii) the random field Ising chain with continuous disorder distribution. In both cases, we define precisely the `two-level' excitations and their statistical properties, and we show that their contributions to various observables are in full agreement at low temperature with the the rigorous results obtained independently. The statistical properties of these two-level excitations moreover yield simple identities at order TT in temperature for some generating functions of thermal cumulants. For the random-field Ising chain, in the regime where the Imry-Ma length is large, we obtain that the specific heat is dominated by small non-universal excitations, that depend on the details of the disorder distribution, whereas the magnetic susceptibility and the Edwards-Anderson order parameter are dominated by universal large excitations, whose statistical properties only depend on the variance of the initial disorder via the Imry-Ma length.Comment: 19 pages, 4 figure
    • …
    corecore