7,469 research outputs found

    Information geometry in quantum field theory: lessons from simple examples

    Get PDF
    Motivated by the increasing connections between information theory and high-energy physics, particularly in the context of the AdS/CFT correspondence, we explore the information geometry associated to a variety of simple systems. By studying their Fisher metrics, we derive some general lessons that may have important implications for the application of information geometry in holography. We begin by demonstrating that the symmetries of the physical theory under study play a strong role in the resulting geometry, and that the appearance of an AdS metric is a relatively general feature. We then investigate what information the Fisher metric retains about the physics of the underlying theory by studying the geometry for both the classical 2d Ising model and the corresponding 1d free fermion theory, and find that the curvature diverges precisely at the phase transition on both sides. We discuss the differences that result from placing a metric on the space of theories vs. states, using the example of coherent free fermion states. We compare the latter to the metric on the space of coherent free boson states and show that in both cases the metric is determined by the symmetries of the corresponding density matrix. We also clarify some misconceptions in the literature pertaining to different notions of flatness associated to metric and non-metric connections, with implications for how one interprets the curvature of the geometry. Our results indicate that in general, caution is needed when connecting the AdS geometry arising from certain models with the AdS/CFT correspondence, and seek to provide a useful collection of guidelines for future progress in this exciting area.Comment: 36 pages, 2 figures; added new section and appendix, miscellaneous improvement

    Riemannian Holonomy Groups of Statistical Manifolds

    Full text link
    Normal distribution manifolds play essential roles in the theory of information geometry, so do holonomy groups in classification of Riemannian manifolds. After some necessary preliminaries on information geometry and holonomy groups, it is presented that the corresponding Riemannian holonomy group of the dd-dimensional normal distribution is SO(d(d+3)2)SO\left(\frac{d\left(d+3\right)}{2}\right), for all d∈Nd\in\mathbb{N}. As a generalization on exponential family, a list of holonomy groups follows.Comment: 11 page

    Computing distances and geodesics between manifold-valued curves in the SRV framework

    Full text link
    This paper focuses on the study of open curves in a Riemannian manifold M, and proposes a reparametrization invariant metric on the space of such paths. We use the square root velocity function (SRVF) introduced by Srivastava et al. to define a Riemannian metric on the space of immersions M'=Imm([0,1],M) by pullback of a natural metric on the tangent bundle TM'. This induces a first-order Sobolev metric on M' and leads to a distance which takes into account the distance between the origins in M and the L2-distance between the SRV representations of the curves. The geodesic equations for this metric are given and exploited to define an exponential map on M'. The optimal deformation of one curve into another can then be constructed using geodesic shooting, which requires to characterize the Jacobi fields of M'. The particular case of curves lying in the hyperbolic half-plane is considered as an example, in the setting of radar signal processing

    Canonical Energy is Quantum Fisher Information

    Get PDF
    In quantum information theory, Fisher Information is a natural metric on the space of perturbations to a density matrix, defined by calculating the relative entropy with the unperturbed state at quadratic order in perturbations. In gravitational physics, Canonical Energy defines a natural metric on the space of perturbations to spacetimes with a Killing horizon. In this paper, we show that the Fisher information metric for perturbations to the vacuum density matrix of a ball-shaped region B in a holographic CFT is dual to the canonical energy metric for perturbations to a corresponding Rindler wedge R_B of Anti-de-Sitter space. Positivity of relative entropy at second order implies that the Fisher information metric is positive definite. Thus, for physical perturbations to anti-de-Sitter spacetime, the canonical energy associated to any Rindler wedge must be positive. This second-order constraint on the metric extends the first order result from relative entropy positivity that physical perturbations must satisfy the linearized Einstein's equations.Comment: 26 pages, 1 figur
    • …
    corecore