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Abstract: Motivated by the increasing connections between information theory and high-

energy physics, particularly in the context of the AdS/CFT correspondence, we explore the

information geometry associated to a variety of simple systems. By studying their Fisher met-

rics, we derive some general lessons that may have important implications for the application

of information geometry in holography. We begin by demonstrating that the symmetries of

the physical theory under study play a strong role in the resulting geometry, and that the

appearance of an AdS metric is a relatively general feature. We then investigate what in-

formation the Fisher metric retains about the physics of the underlying theory by studying

the geometry for both the classical 2d Ising model and the corresponding 1d free fermion

theory, and find that the curvature diverges precisely at the phase transition on both sides.

We discuss the differences that result from placing a metric on the space of theories vs. states,

using the example of coherent free fermion states. We also clarify some misconceptions in the

literature pertaining to different notions of flatness associated to metric and non-metric con-

nections, with implications for how one interprets the curvature of the geometry. Our results

indicate that in general, caution is needed when connecting the AdS geometry arising from

certain models with the AdS/CFT correspondence, and seek to provide a useful collection of

guidelines for future progress in this exciting area.
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1 Introduction

Recent progress in understanding the AdS/CFT correspondence has seen an explosion of ef-

fort at the interface of information theory and both quantum field theory and gravity. For

example, ideas such as quantum error correction appear to play a key role in bulk reconstruc-

tion, and tensor networks have become popular toy models for constructing bulk-boundary

maps in this language—see, e.g., [1–4], or [5] for a recent review. Additionally, key advances

in our understanding have relied crucially on entanglement-based probes of the bulk, such

as Ryu-Takayanagi / HRT surfaces and their quantum extensions [6–8], which represent a

fundamental link between (quantum) information-theoretic quantities on the one hand, and

bulk geometric objects on the other. A further example is given by holographic distance

measures that were considered both for pure states [9] and mixed states [10].

In light of the wealth of developments arising from the application of concepts from

information theory to AdS/CFT, one may also go one step further, and attempt to use

information theory to understand how the duality itself may arise. That is, instead of taking
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gauge/gravity duality as a fait accompli and then using information theory to fill out the

holographic dictionary, one may ask whether the dual gravity theory itself can be understood

as the “information space” naturally associated to the field theory. This is similar in spirit

to the “It from Qubit” initiative/paradigm, in which the gravitational theory is viewed as

emerging from the entanglement structure of the boundary field theory. Here, the idea is

slightly broader insofar as we do not limit ourselves to entanglement-based probes, but instead

ask whether there is any sense in which a geometric space can be naturally associated to the

field theory based on the information content therein.

In fact, the study of the geometry naturally associated with a space of probability distri-

butions is an old subject that predates AdS/CFT by several decades. Known as information

geometry, it was primarily developed by statisticians, based on the pioneering work of Fisher,

and enjoys a range of applications from statistics to machine learning [11–16]. The canonical

reference is [17]; see also [18, 19] for some historical works, or [20] for an online review. The

basic idea is to endow a statistical model with the structure of Riemannian manifold, so that

methods of differential geometry can be applied to the study of probability theory and statis-

tics. A central object in this study is the Fisher information matrix, which provides a metric

on the space of distributions representing the model or theory under consideration. In the

interest of making this paper self-contained, we start with a brief introduction to information

geometry in section 2.

A number of works have sought to understand AdS/CFT in this context, which requires

parametrizing the theory in such a way that this statistical framework can be adapted to

quantum field theory. In one approach to this task, the bulk spacetime arises as the moduli

space of instantons endowed with the Fisher information metric. Building on earlier results

that showed Yang-Mills instantons to be good probes of the bulk geometry [21], Blau and

Thompson [22] evaluated the information metric on the moduli space of SU(2) instantons

and showed that it corresponds to AdS5, even away from the large N limit for N = 4 as well

as N = 2 SU(N) super Yang-Mills theory. The instanton correction matches the first-order

string theory correction to the supergravity action. An approach to capturing the compact

space, the analogue of the S5 in the best-known example of AdS/CFT, was taken more

recently in [23] using the CPN nonlinear sigma model as a proxy; see also [24–27] for related

works. Yet a different approach was used in [28] to construct a metric in real Euclidean

space by considering an RG gradient flow for large N φ4 theory in d dimensions. A (d+1)-

dimensional asymptotically AdS metric was found both in the UV and in the IR, with different

AdS radii. To date, it is unclear how to capture the internal S5 in such an approach, but the

appearance of an AdS space has nonetheless stimulated some excitement.

However, a key ingredient in the above is the fact that in the large N saddle point

approximation, the classical supergravity action takes on a Gaussian form. Hence, while we

do not know the degrees of freedom in the strongly coupled N = 4 gauge theory, the duality

〈
e
∫

ddxφ0(x)O(x)
〉

CFT
= e−SSUGRA

∣∣∣∣
φ(0,x)=φ0(x)

, (1.1)
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implies that they lead to a Gaussian probability distribution. But it has long been known

in the information geometry literature, even prior to AdS/CFT, that the information metric

associated with Gaussian distributions is hyperbolic space; see section 2 and [17, 29] for more

details. In fact, as we shall show in section 3, the AdS metric appears to be merely a reflection

of the symmetries of the underlying distribution. This may have important implications in

light of recent attempts to connect the appearance of an AdS geometry with holography [30–

34]. Furthermore, the map between Gaussian distributions and a hyperbolic Fisher metric

is not bijective: other, quite different distributions may also lead to the same hyperbolic

space; see section 3 and [35], in which a construction procedure for obtaining probability

distributions from a fixed information metric was given.

These two issues – symmetry and non-uniqueness – immediately raise two questions: first,

how much physics of the field theory is encoded in the information geometry? Second, can

we find other meaningful realizations of the information space associated to a given theory,

and perhaps even generalize gauge/gravity duality to an “information/geometry” duality

applicable to a wider class of theories? The purpose of this work is to present some initial

explorations into these questions, as well as to collect some facts about the Fisher metric

which, while familiar to experts in information geometry, do not appear to have survived the

latter’s recruitment into the quantum field theory community.

As mentioned above, we shall begin by reviewing the basic ingredients of information

geometry in section 2, and show how AdS appears as the metric on the space of Gaussians

as an illustrative example. In section 3, we substantiate the aforementioned claim that the

hyperbolic geometry is a reflection of the symmetries of the underlying theory, and discuss

some further issues with non-uniqueness in the putative information ↔ geometry map. This

motivate us to consider which physical features are faithfully preserved under this relationship.

To that end, we present in section 4 an example of an unstable system – massless φ4 theory

in 3+1 dimensions with an inverted potential – and show that the information geometry on

the space of instantons is complex, and therefore not Euclidean AdS. We interpret this as the

geometrical manifestation of the sickness of the underlying field theory.

We then turn to the study of curvature invariants. Insofar as these are fundamental

features of the geometry, it is natural to ask which information-theoretic aspects may be

encoded therein. Motivated in part by earlier work in condensed matter systems [36–38]

(see also [39]), we shall examine the 2d classical Ising model in section 5, and show that the

Ricci scalar diverges along the critical line. Additionally, using the well-known map between

the 2d classical Ising model and a 1d free fermion theory, this example provides us with the

opportunity to examine the information geometry on both sides of an existing correspondence

between physical theories. We shall find that the geometry of the free fermion theory is one-

dimensional: the single component of the metric can be parametrized by the fermion mass,

and diverges precisely at the critical temperature in a way that matches the behaviour of the

2d theory. Thus, while the correspondence between the 2d classical Ising model and the 1d

free fermion theory is not a true duality, the salient geometrical features are captured on both

sides. To our knowledge, this is the first such application of information geometry to both
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sides of an existing correspondence between different physical theories, and it would be very

interesting to consider other examples.

We note that an important difference arises when considering the Fisher metric on the

space of theories, spanned by its couplings and masses, as opposed to the metric on the space

of states. The former was considered for quantum field theories for instance in [40], where

the Zamolodchikov metric is used as an information metric, which then changes under RG

flow. The latter was considered for instance in the instanton approach of Blau and Thompson

already discussed above [22], where the information metric is defined on the moduli space

of the gauge theory considered. Our treatment of the Ising model in section 5 falls into the

former class. To illustrate the difference however, we also discuss the information metric on

the space of coherent states for free fermions in section 6.

There has been some confusion in the physics literature as to the curvature of the infor-

mation space. For example, [37] asserts that the geometry of non-interacting models is flat,

while this is clearly false for even the simple Gaussian example mentioned above. We believe

this is a confusion of language, stemming from the fact that in information geometry, one

typically considers the 1-connection, rather than the 0-connection familiar to physicists; and

the associated 1-curvature is indeed zero for a wide class of models, known as exponential

families (see sections 2.1). The reason for this stems from the fact that the 1-curvature is

more naturally associated with information loss along a curve, as quantified by the Kullback-

Leibler divergence or relative entropy, whereas the information-theoretic interpretation of the

0-curvature is less clear. A skim of the information geometry literature will hence turn up

statements about flat geometries, without making it immediately obvious that this is not

flatness in the physicist’s familiar sense. We elaborate on this point in section 7, where we

also point out that vanishing 1-curvature corresponds to the trivial solution of the equation

of motion arising from a Chern-Simons action. This is reminiscent of the map between field

theory and supergravity actions in standard realizations of field theory/gravity dualities, at

least insofar that there is an obvious action providing the required dynamics on the gravity

side.

Finally, we close in section 8 with a concise summary of the lessons learned from the

examples herein, as well as some speculations on the relationship between information geom-

etry and holographic RG [40], and the potential for this approach to enable us to compute

complexity [41] in strongly coupled / interacting field theories.

2 Information geometry

To make this paper self-contained, let us begin with a brief introduction to information

geometry. We shall present only those ingredients required for subsequent sections, and refer

the interested reader to [17] for details.

One is interested in studying the properties of a statistical model S, which is essentially
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a set of probability distribution functions p : X → R satisfying 1

p(x) ≥ 0 ∀x ∈ X , and

∫
dx p(x) = 1 , (2.1)

where X is the space of stochastic or physical variables (e.g., Rn, or some discrete set).

Additionally, each p may be parametrized by ξ = (ξ1, . . . , ξn) ∈ Rn, so that the model S is

S = {pξ = p(x; ξ)
∣∣ ξ ∈ Ξ} , (2.2)

where Ξ ⊂ Rn and ξ 7→ pξ is injective. This last provides a map between the parameter space

and the points on the manifold. That is, we regard each point ξ as a different distribution

within our model, and take the map Ξ → R provided by ξ to be in C∞ so that we may

take derivatives with respect to these parameters. Note that it is the parameters ξ – which

represent points on this statistical manifold – with respect to which we’ll be computing

derivatives, not the stochastic variables x. Accordingly, we denote ∂i ≡ ∂
∂ξi

.

Now, given a model S, the Fisher information matrix of S at a point ξ is the n×n matrix

G(ξ) = [gij(ξ)], with elements

gij(ξ) ≡ 〈∂i`ξ∂j`ξ〉ξ =

∫
dx ∂i`(x; ξ)∂j`(x; ξ)p(x; ξ) , (2.3)

where

`ξ(x) = `(x; ξ) ≡ ln p(x; ξ) , (2.4)

and the expectation 〈. . .〉ξ with respect to the distribution pξ is defined as

〈f〉ξ ≡
∫

dx f(x)p(x; ξ) . (2.5)

Note that G is symmetric and at positive semi-definite by construction. It will prove conve-

nient to rewrite the metric as

gij = 〈∂i`∂j`〉 =

∫
dx p ∂ilnp ∂j lnp =

∫
dx ∂ip ∂j lnp

=

∫
dx ∂i(p ∂j lnp)−

∫
dx p ∂i∂j lnp

= ����∂i〈∂i`〉 − 〈∂i∂j`〉 ,

(2.6)

where on the last line, the first term vanishes by the normalization constraint, i.e., 〈∂i`〉 =

∂i〈1〉 = 0.

1More generally, this framework goes through provided the distributions are normalized to some finite value,

not necessarily 1.
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2.1 Exponential families

While the machinery of information geometry can be applied to any distribution which sat-

isfies the condition (2.1), we will be particularly interested in a class of models known as

exponential families. Suppose an n-dimensional model S = {pθ | θ ∈ Θ} can be expressed in

terms of n+1 functions {C,F1, . . . , Fn} on X and a function ψ on Θ as

p(x; θ) = exp
[
C(x) + θiFi(x)− ψ(θ)

]
, (2.7)

where Einstein’s summation convention is assumed. Then S is an exponential family, and θ

are the so-called canonical coordinates, not to be confused with the physical coordinates x.

The function ψ is known as the potential, which is fixed by the normalization to

ψ(θ) = ln

∫
dx exp

[
C(x) + θiFi(x)

]
. (2.8)

Note that the parametrization θ 7→ pθ is 1:1 if and only if the functions {C,F1, . . . , Fn} are

linearly independent, which we shall assume to be the case.

Many important models fall into this class which, in addition to some interesting math-

ematical properties (see sec. 7), have the technical nicety of admitting an expression for the

Fisher metric directly in terms of the potential. Observe that

∂j` = Fj(x)− ∂jψ(θ) =⇒ ∂i∂j` = −∂i∂jψ(θ) , (2.9)

where the derivatives are taken with respect to the canonical coordinates, ∂i ≡ ∂
∂θi

. Therefore

the metric (2.6) may be written

gij = ∂i∂jψ(θ) . (2.10)

We emphasize that while (2.6) is true for general models, the simple form (2.10) holds only

for exponential families. We will rely on this form of the metric extensively below. Another

form that is sometimes useful is the expression in terms of the variance of Fi,

gij = 〈(Fi − 〈Fi〉)(Fj − 〈Fj〉)〉 . (2.11)

2.2 Simple example: AdS2 from a Gaussian

As a concrete example, let us show how hyperbolic space arises from the normal distribution

p(x;µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 = exp

[
− 1

2σ2

(
x2 − 2µx+ µ2

)
− ln(

√
2πσ)

]
. (2.12)

This clearly falls within the class of exponential families (2.7), with the identifications:2

C(x) = 0 , F1(x) = x , F2(x) = x2 , θ1 =
µ

σ2
, θ2 = − 1

2σ2
,

ψ(µ, σ) =
µ2

2σ2
+ ln

(√
2πσ

)
.

(2.13)

2To avoid conflating indices with powers, we have lowered the indices on the parameters θi = θi.
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To evaluate the metric (2.10), we invert these relations in order to express the distribution in

terms of the canonical coordinates:

µ = − θ1

2θ2
, σ =

1√
−2θ2

, ψ(θ) = − θ2
1

4θ2
+

1

2
ln

(
− π
θ2

)
. (2.14)

Strictly speaking, the potential is all we need to compute the metric, but we can also write-out

the distribution (2.12) as a quick check on the consistency of our identifications:

p(x; θ) =

√
−θ2

π
e
θ2
(
x+

θ1
2θ2

)2
= exp

[
θ2x

2 + θ1x+
θ2

1

4θ2
− 1

2
ln

(
− π

σ2

)]
. (2.15)

Substituting the potential ψ(θ) in (2.14) into (2.10) then gives the metric in canonical coor-

dinates:

gij = − 1

2θ2

(
−1 θ1

θ2
θ1
θ2

θ2−θ21
θ22

)
, (2.16)

and hence the squared line element is

ds2 = − 1

2θ2
dθ2

1 +
θ2 − θ2

1

2θ3
2

dθ2
2 +

θ1

θ2
2

dθ1dθ2 . (2.17)

The metric in terms of the original (physical) coordinates µ, σ is then obtained by performing

a simple change of basis via the identifications (2.13):

dθi =
∂θi
∂µ

dµ+
∂θi
∂σ

dσ =⇒

{
dθ1 = 1

σ2 dµ− 2µ
σ3 dσ

dθ2 = 1
σ3 dσ .

(2.18)

whence we at last obtain

ds2 =
dµ2 + 2dσ2

σ2
, (2.19)

which is none other than AdS2, with the standard deviation playing the role of the radial

coordinate. Loosely speaking, the intuition is that a large standard deviation implies a large

overlap between different distributions. Operationally, this means that they are harder to

distinguish (e.g., requiring more measurements), and are accordingly considered to be “close”

in an information-theoretic sense.

Two immediate observations are worth remarking upon. First, we see that the geometry

corresponding to a free theory is clearly not flat, contrary to some claims in the literature that

non-interacting theories have vanishing Ricci scalar [37, 42]; we shall return to this issue when

we discuss connections in section 7. Second, we note that the map between the Gaussian and

the hyperbolic Fisher metric is achieved without any reference to the dynamics leading to this

particular metric on the gravity side, and in this sense falls short of the original AdS/CFT

correspondence. We shall turn to this second issue in the next section, and investigate the

extent to which this geometry merely reflects the underlying symmetries of the distribution.

Before doing so however, let us mention a simple example of a distribution which is

not an exponential family and yet still yields and AdS2 metric, namely the Cauchy-Lorentz

distribution. For other examples of distributions that yield AdS, as well as other geometries

(e.g., the sphere), see [29, 35].
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3 A hyperbolic red herring3

When we say that the information geometry merely reflects the underlying symmetries of the

distribution, we mean that a symmetry of the probability distribution will manifest itself as

a corresponding symmetry of the Fisher metric. Let us be precise about what is meant by a

symmetry of the probability distribution. Consider a map

ξ̃ : Ξ→ Ξ . (3.1)

Suppose that there exists a map

x̃ : X → X (3.2)

such that

p(x; ξ̃) dx = p(x̃; ξ) dx̃. (3.3)

Then, the probability distribution p(x; ξ) is said to be symmetric under the transformation

ξ 7→ ξ̃(ξ). In other words, by a suitable redefinition of the stochastic variable x, we can

“undo” the transformation on ξ, thereby putting the transformed probability distribution

back into the form of the original probability distribution.

Let us take the Gaussian distribution written in terms of the mean µ and standard

deviation σ as an example. It is clear that the translation (µ, σ) 7→ (µ + c, σ), where c is

any real constant, can be “undone” by a translation x 7→ x + c. Therefore, we say that the

Gaussian distribution is symmetric or invariant under a translation of the mean. A more

nontrivial transformation is the scaling transformation (µ, σ) 7→ (λµ, λσ), for some real λ.

The map x 7→ λx will undo this scaling transformation. Unlike the translation, the scaling

transformation does come with a nontrivial Jacobian in x, but this Jacobian is precisely

what is needed to maintain the relation (3.3). Therefore, the Gaussian is invariant under

translations of µ and simultaneous scaling of µ and σ. The Fisher metric corresponding to

the family of Gaussian distributions inherits these symmetries. But the only metric which

enjoys these symmetries is AdS2 and therefore the Fisher metric could not have been anything

else!

To reiterate, a symmetry of the probability distribution will also be a symmetry of the

corresponding Fisher metric. The converse, however, is not necessarily true—the Fisher

metric can exhibit more symmetries than are present in any particular probability distribution

from which that metric may be derived. Note that we are careful to say “any particular

probability distribution” because, as demonstrated in [35], there are in fact infinitely many

probability distributions that give the same Fisher metric. For instance, example 4.8 of [35]

derives Euclidean AdS2 as the Fisher metric of the following three-dimensional probability

distribution (in this case, X = R3):

p(x1, x2, x3;µ, σ) =

3∏
i=1

pi(xi − hi), (3.4)

3For those unfamiliar with this idiom, a red herring is a misleading or distracting clue that may cause one

to reach a false conclusion.
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where

p1(x) =
1√
2π
e−

1
2
x2 , h1(µ, σ) =

cosµ

σ
,

p2(x) =
1

π
sechx , h2(µ, σ) =

sinµ

β
, (3.5)

p3(x) =
1

π(1 + x2)
, h3(µ, σ) = ln

(
σ +

√
σ2 − 1

)
−
√
σ2 − 1

σ
.

It is clear that this probability distribution exhibits neither the translation invariance in µ

nor the scaling symmetry in µ and σ that is enjoyed by the corresponding Fisher metric,

which is Euclidean AdS2.

Given the above, we believe that care is needed when attempting to identify the appear-

ance of an AdS geometry with some intrinsic aspect of holography. This is not to say that the

hyperbolic geometry arising from some theories is unrelated to AdS/CFT, but it is clearly

not unique, and may represent a red herring or false conclusion in this context.

4 Unstable configurations

Here we turn to a simple example demonstrating how the fact that a system has an unstable

potential is encoded in the Fisher metric. Our example is constructed on the space of states,

in analogy with the stable examples for the Fisher metric of Yang-Mills instantons in [22]

and the Klein-Gordon field in [43]. Both of these make use of the proposal of Hitchin [44] to

identify the negative of the Lagrangian density, evaluated on a family of field configurations,

as the probability distribution on those states. The Fisher metric on the space of 4D Yang-

Mills instantons turns out to be Euclidean AdS5 [22]. In that case, the Lagrangian density F 2

evaluated on the instantons exhibits translation invariance in the center and scale invariance

in both the center and the width of the instantons.

Our example is similar to the Yang-Mills instanton, but with one crucial difference –

that the instantons themselves are in an unstable potential. Of course, the same symmetry

argument would make one conclude that the Fisher metric ought to still be AdS. However,

we will see how the machinery is smart enough to know when the field theory that one is

considering is unstable. The system is taken to be in four Euclidean dimensions with a real

scalar field and an action

S =

∫
d4x

(
∂µφ∂

µφ− g2φ4
)
. (4.1)

In Euclidean signature, the potential is V = −g2φ4, which is unbounded from below. There-

fore, at least classically, the theory is unstable. Nevertheless, one can demonstrate the exis-

tence of exact solutions of the equation of motion given by the instantons, parametrized by

a four-dimensional center, ξµ and a width ρ:

φ(x; ξµ, ρ) =
2ρ

g
[
(x− ξ)2 + ρ2

] . (4.2)
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The action evaluated on this instanton can be normalized to one by setting

g2 =
8π2

3
. (4.3)

The resulting integrals that appear in the Fisher metric are technically ill-defined since the

integrands contain singularities. For example, the non-vanishing components of the Fisher

metric read

gρρ =
28a

5ρ2
+

24a

ρ2

∫ ∞
0

x dx

(x− 1)(x+ 1)4
, (4.4a)

gξµξν =

(
28a

5ρ2
+

6a

ρ2

∫ ∞
0

x2dx

(x− 1)(x+ 1)4

)
δµν , (4.4b)

where a is an overall prefactor that we can set at our convenience. The remaining integrals

have a pole at x = 1 and thus the integrals themselves are ill-defined: one must specify a

contour of integration and thus a way of avoiding the pole. There are two ways of doing this:

Either add or subtract iε to x and then take the ε → 0 limit at the end. The results for

the Fisher metric components are denoted with a superscript ± depending on which sign ±iε
prescription is used,

g±ρρ =
36∓ 15iπ

10

a

ρ2
, (4.5a)

g±ξµξν =
244∓ 15iπ

40

aδµν
ρ2

. (4.5b)

For convenience, we may set a such as to set gξµξν equal to 1
ρ2
δµν . Then, when the dust

settles, the squared line element may be expressed in the form

ds2 =
dξµdξµ + cdρ2

ρ2
, (4.6)

where c is some fixed complex number. Importantly, c has a nonzero imaginary part and

therefore, this metric cannot be considered real Euclidean AdS5. This signals the instabil-

ity present in the field-theory model, and indicates that the information geometry retains

knowledge of whether the original field theory is well-defined.

5 Information geometry on theory space: the Ising model

Here we perform a further investigation of which aspects of the physical theory are captured by

the information geometry by considering the 2d Ising model. Studies of aspects of information

geometry for the Ising and related spin models have been performed before in the literature

(see, e.g., [37, 39]). Here we focus on the 2d Ising model, which has the feature of admitting a

map to an ostensibly quite different physical theory, namely a 1d free fermion field theory. In

the first subsection, we shall examine the Fisher metric and its Ricci curvature for the 2d Ising

model on the theory space spanned by its two couplings, and show that the geometry correctly

captures the divergence along the critical line. We will then reproduce this behaviour in the

second subsection for the 1d free fermion theory.
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5.1 2d classical Ising model

Let us consider the 2d classical Ising model on a square lattice of spins σi,j = ±1, with

vanishing external magnetic field. Denoting the horizontal and vertical couplings by J and

K, respectively, the Hamiltonian for an N×N lattice may be written

H = −J
N∑

i,j=1

σi,jσi+1,j −K
N∑

i,j=1

σi,jσi,j+1 , (5.1)

where we have identified both directions to form a torus, i.e, σN+1,j = σ1,j and σi,N+1 = σi,1.

Note that the state (i.e., spin configuration) satisfies a Boltzmann distribution at inverse

temperature β, and thus we may write

p(σ) = Z−1e−βH(σ) , (5.2)

where the partition function is

Z =
∏
i

∑
σi=±1

e−βH(σ) . (5.3)

Hence, by exponentiating this normalization factor, we may express the distribution in the

form of an exponential family:

p(σ; θ) = exp

β
J N∑

i,j=1

σi,jσi+1,j +K
N∑

i,j=1

σi,jσi,j+1

− lnZ

 , (5.4)

cf. (2.7) where the canonical coordinates θ ∈ {βJ, βK}. Note that for distributions in the

form (5.2), lnZ plays the role of the potential ψ, which means that in order to compute the

metric (2.10), all we need is an expression for the free energy. In particular, in thermodynamic

limit N →∞, the reduced free energy per site f = − β
NF = N−1 lnZ becomes

f =
1

2
ln 2 +

1

2π

∫ π

0
dφ ln

[
cosh(2βJ) cosh(2βK) +

1

k

√
1 + k2 − 2k cos(2φ)

]
, (5.5)

where we have defined k ≡ csch(2βJ) csch(2βJ), and φ is some auxilliary angular parameter.

This will play the role of the potential, i.e.,

gij = ∂i∂jf . (5.6)

The integral over the auxilliary parameter φ cannot be performed analytically, but we

can nonetheless proceed to determine the form of the metric, and then evaluate the curvature

numerically. To compute the derivatives in (5.6), we first re-express the free energy in terms

of the canonical coordinates. By inspection, we identify

C = 0 , F1 = σi,jσi+1,j , F2 = σi,jσi,j+1 , θ1 = βJ , θ2 = βK , ψ(θ) = lnZ . (5.7)
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Figure 1: Numerical evaluation of the Ricci scalar (5.8) for the 2d Ising model, using a uniform grid of

141×141 = 19, 881 points between J,K ∈ {0.1, 1.5} (with β = 1). In the left figure, we have interpolated

between points to better show the global features of the curvature: it diverges as J,K →∞, has a discontinuity

along the critical line (5.9) (rendered as the jagged line of spikes by Mathematica’s interpolation attempts),

and is otherwise approximately flat. In the right figure, we have plotted the data without interpolating, as

well as restricted the vertical range to R ∈ {−100, 100}, to better show the discontinuity along the critical

line (5.9). One sees clearly that the curvature diverges in opposite directions depending on which side one

approaches from. We shall see below that this corresponds to the sign of the mass in the corresponding free

fermion theory on either side of the phase transition, cf. fig. 2.

Note that F1 and F2 are linearly independent, as required, since they correspond to couplings

along different axes. In practice, we will be interested in evaluating the curvature for a range

of couplings at fixed temperature, so we may equivalently absorb β into the couplings (i.e.,

β=1), whereupon the canonical and physical variables coincide.

The metric (5.6) is rather unwieldy, so we do not write out the full expression here.

However, we can still proceed to compute curvature invariants – in particular the Ricci scalar

– to see which physical aspects of the 2d Ising model are reflected in the geometry. To evaluate

the Ricci scalar, it is convenient to use the following expression in terms of the reduced free

energy [37]:

R = − 1

2g2

∣∣∣∣∣∣∣
∂2
i f ∂i∂jf ∂2

j f

∂3
i f ∂2

i ∂jf ∂i∂
2
j f

∂2
i ∂jf ∂i∂

2
j f ∂3

j f

∣∣∣∣∣∣∣ , (5.8)

where g = detgij . This provides a (very lengthy) expression for the Ricci curvature, which

can be evaluated numerically for a range of couplings J,K. Results are shown in figure 1.

Of course, one of the most important features of the 2d Ising model is the presence of a

finite-temperature phase transition along the critical line

sinh(2βJ) sinh(2βK) = 1 , (5.9)

which manifests in the information geometry as the discontinuity in the curvature observed

in fig. 1. It is encouraging that this important physical feature is captured by this approach,
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though it remains an open question as to which other aspects of the geometry are faithful

representations of the original physics. For example, in the context of our earlier remark

that non-interacting theories do not necessarily imply R = 0, here we have an example of

the converse, namely that the vanishing of the Ricci scalar away from the critical line (and

the divergence near infinity) clearly does not imply that the model ceases to be interact-

ing. Thus, while the curvature clearly does capture important physical features (e.g., critical

points), a complete mapping between the physics of the underlying model and the curvature

of the geometry requires a more careful study. Indeed, as we discuss in section 7, the no-

tion of curvature studied above is not necessarily the most appropriate for capturing certain

information-theoretic notions.

5.2 1d free fermion theory

It is a well-known fact that the 2d classical Ising model can be mapped to a theory of non-

interacting fermions in 1d. There are however myriad different ways of actually constructing

the resulting field theory which, while they reproduce the correct critical behaviour, give

slightly different expressions for the fermion mass in terms of the original 2d couplings; for

a selection of different results [45–48]. Since we are primarily interested in comparing the

critical behaviour, we shall proceed with [45], which – in the notation above – corresponds to

setting J = K = 1, i.e., we treat β as the coupling and examine the geometry along the line

of J ↔ K symmetry in fig. 1. Accordingly, we expect that the information geometry for the

1d free fermion theory will diverge at the critical (inverse) temperature

βc =
1

2
ln
(√

2 + 1
)
≈ 0.440687 , (5.10)

cf. (5.9) with J=K= 1 and β = βc. We shall now see that the information geometry indeed

reproduces this feature.

For the isotropic case with J =K absorbed into β, we shall write the partition function

(5.3) as

ZV (β) =
1

2V

∑
σi=±1

exp

(
β
∑
(ij)

σiσj

)
. (5.11)

where the sum in the exponential is over nearest-neighbor pairs (ij) and where we have

included an explicit normalization by the total Hilbert space dimension 2V , where V = N2

is the total number of sites, for consistency with [45]. In this notation, the corresponding

reduced free energy is4

f = lim
V→∞

1

V
lnZV (β) . (5.12)

4Note that [45] writes this as F (β), as if this were the free energy. This is simply a matter of nomenclature.

However, the standard definition of the free energy is F = − 1
β

lnZ, which explains why we put a relative

factor of −β between F and the reduced free energy f . At the end of the day, we want to take two derivatives

of lnZ to get the metric. Dividing by the volume before taking derivatives ensures a well-defined continuum

limit V →∞.
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In this case, we have only a single parameter β, so the information metric is one-dimensional,

cf. (5.6) with i=j=β. The second derivative of the reduced free energy with respect to β is

essentially the specific heat, which is given in [45],

gββ =
d2F (β)

dβ2
' 8
√

2

π
ln

1

|β − βc|
+ regular part . (5.13)

The regular part consists of terms which are polynomial in β−βc and thus vanish as β → βc;

since we are interested in the dominant behaviour near criticality, we shall discard this piece

henceforth. We will also disregard the overall prefactor, since this does not alter the divergence

structure of the metric. Thus, for our purposes, we may summarize the result more compactly

as

gββ ≈ ln
1

|β − βc|
, (5.14)

which diverges to +∞ as β → βc.

We wish to express (5.13) in terms of the mass parameter m that appears in the corre-

sponding free Majorana fermion field theory. This model is also described in [45], with

m = 2

(
tc
t
− 1

)
, (5.15)

where tc ≡
√

2−1 and t ≡ tanhβ (the lattice spacing has been set to 1, so m is dimensionless).

Solving this expression for β perturbatively around the critical point yields

β − βc ≈ −
m

4
, (5.16)

which we can then substitute into the metric component (5.14) to find

gββ ≈ ln
1

|m|
, (5.17)

where we have again dropped the regular piece and overall numerical prefactor. This result

is plotted in fig. 2.

We would now like to reproduce this result from a calculation in the low-energy effective

field theory whose action is given, in Euclidean signature, by

S =

∫
d2z

2π

(
ψ∂ψ + ψ∂ψ + imψψ

)
. (5.18)

The lightcone coordinates (z, z̄) are related to the Cartesian coordinates (x, y) via(
z

z̄

)
=

(
1 i

1 −i

)(
x

y

)
,

(
x

y

)
=

1

2

(
1 1

−i i

)(
z

z̄

)
, (5.19)

and the lightcone derivatives are defined as

∂ ≡ ∂z , ∂ ≡ ∂z̄ . (5.20)
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Figure 2: Left: real (blue) and imaginary (red) components of the Fisher information metric (5.13) for the

1d free fermion theory corresponding to the 2d classical Ising model. Note that the metric obtained via the

mapping in [45] is only valid near the critical point mc = 0. Right: plot of the mass (5.15) as a function of

β = βJ = βK, from which we see that the free fermion mass vanishes precisely at the critical temperature

(5.10), corresponding to the phase transition in the 2d model where one expects to find a conformal field

theory. The mass also takes opposite signs on either side of the critical line in fig. 1 that matches the direction

of divergence in the 2d curvature, i.e., we find m>0 on the side nearer the origin and m<0 on the side nearer

βJ = βK →∞.

To calculate the metric gββ for this theory, we first note that in the field theory analogue of the

probability distribution (5.2), one identifies the probability of a particular field configuration

with the integrand of the normalized path integral (in Euclidean signature) evaluated on that

field configuration. One can then show (cf. eqs. (11) and (12) in [49]) that the Fisher metric

is given by

gij =
1

V

(
〈∂iS ∂jS〉 − 〈∂iS〉〈∂jS〉

)
, (5.21)

where the expectation values are taken with respect to the standard path integral, the deriva-

tives are taken with respect to the coupling constants of the theory, and the volume divergence

is explicitly divided out as usual. In the particular case when the coupling constant is a mass

parameter, the first expectation value above reduces to a four-point function and the second

to a product of two-point functions. In the special case of a free field theory, of which (5.18)

is an example, the one can use Wick’s theorem to reduce the four-point function to sums (or

differences) of products of pairs of two-point functions. For the example at hand, one finds

gmm =

∫
d2x
(
〈ψ(x)ψ(0)〉〈ψ(x)ψ(0)− 〈ψ(x)ψ(0)〉〈ψ(x)ψ(0)〉〉

)
. (5.22)

The set of four possible two-point functions is given by [45](
〈ψ1ψ2〉

〈
ψ1ψ2

〉〈
ψ1ψ2

〉 〈
ψ1ψ2

〉) = −2π

(
2∂1 im

−im 2∂1

)∫
d2p

(2π)2

eip·(x1−x2)

p2 +m2
, (5.23)

where the subscripts indicate the coordinate xi = (xi, yi) at which the field or derivative is

evaluated. Plugging these into the expression for gmm, and focusing just on the divergent
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part, simplifies the result to

gmm =

∫ Λ

0

pdp

p2 +m2
, (5.24)

where we have introduced an ultraviolet cutoff because the integral is logarithmically diver-

gent. Assuming Λ� |m|, we get

gmm ≈ ln

(
Λ

|m|

)
. (5.25)

Renormalization will simply replace the cutoff with a renormalization scale, µ, which, in terms

of comparing with gββ in (5.17) is just part of the “regular part”. As far as the divergence at

criticality is concerned, we get the same behavior,

gmm ≈ ln
1

|m|
. (5.26)

Comparing this result with gββ in (5.17), we see that both sides of the mapping retain the

salient features, namely the location of the divergence (at m= 0) and the type or degree of

the divergence (logarithmic).

6 Information geometry on state space: coherent fermions

So far, with regards to the 2d Ising model, we have been discussing the Fisher metric on the

space of theories parametrized by J and K, or β (in the isotropic case J = K = 1). For the

associated free fermion theory there is a single parameter, the fermion mass m, which may

be obtained as function of J and K when performing the map. However, as we did for the

moduli space of scalar field instantons, inspired by the work in [22] on Yang-Mills instantons,

we can also consider the information metric on a space of states.

For a general quantum field theory, the quantum analogue of the Fisher metric when

working with density matrices is the Bures metric which is defined in the following way [50].

The Bures metric is defined by first defining the Bures distance between two density matrices

ρ1 and ρ2,

DB(ρ1, ρ2) = 2
(

1− tr

√
ρ

1/2
1 ρ2 ρ

1/2
1

)
, (6.1)

and then expanding this Bures distance to lowest nontrivial order in dρ, where ρ2 = ρ1 + dρ.

The lowest order is second order, which thus defines a line element and a metric, called the

Bures metric. For pure states, the Bures metric reduces to the Fisher metric (up to an overall

factor).

We now consider the Bures metric on the space of coherent states, for which it reduces to

the Fisher metric. For a single spin, this was calculated in [51]. Here, the spin is parametrized

in terms of a normalized three-dimensional vector (x1, x2, x3) = (sin θ cosφ, sin θ sinφ, cos θ)

as

|z〉 =
1

(1 + |z|2)1/2

(
1

z

)
, (6.2)
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where

z =
x1 + ix2

1 + x3
= eiφ tan

θ

2
, (6.3)

and the Fisher metric is found to be that of a two-dimensional sphere,

ds2 =
dz dz̄

(1 + |z|2)2
=

1

4
(dθ2 + sin2 θ dφ2). (6.4)

An equivalent result is obtained for the Fisher metric of two free Majorana fermions [50].

Denoting theses fermions by ψ1 and ψ2, the coherent state is defined to be

|ψλ〉 =
1− λψ†1(k)ψ2(k)

(1 + |λ|2)1/2
|Ω〉 , (6.5)

where λ is a complex parameter and |Ω〉 is the unentangled IR state defined by

ψ1(k) |Ω〉 = 0, ψ†2 |Ω〉 = 0. (6.6)

For the states (6.5), the Bures metric is found to be that of a two-dimensional sphere as well,

ds2 =
dλ dλ̄

(1 + |λ|2)2
. (6.7)

As an interesting fact we note that according to [29], within information geometry so-called

categorical distributions, different from the exponential families discussed in section 2.1 above,

lead to spherical Fisher metrics. In information theory, categorical distributions are general-

ized Bernoulli distributions describing a discrete random variable with more than two possible

outcomes with fixed probability. However, as again discussed in detail in [35], the map be-

tween probability distributions and metrics is not bijective, and also other distributions may

lead to spherical Fisher metrics. Nevertheless, since bosonic coherent states lead to hyper-

bolic Fisher metrics [50], it appears as a promising open question to determine how the Pauli

principle leads to this different geometric structure for fermions and bosons.

7 Different notions of curvature

In this section, we begin by clarifying the various notions of curvature that appear in the

literature; in particular, the statement that non-interacting theories are flat properly refers to

flatness with respect to the 1-curvature, not the 0-curvature leading to a metric connection.

The failure to appreciate this distinction seems to have lead to some erroneous and poten-

tially confusing claims. The following will draw primarily from [17]; see also [20] for a brief

introduction.

For maximum clarity, let us start be recalling some basic differential-geometric notions.

Recall that the covariant derivative ∇ may be expressed in local coordinates as

∇XY = Xi
(
∂iY

k + Y jΓ k
ij

)
∂k , (7.1)
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where X = Xi∂i, Y = Y i∂i are vectors in the tangent space TS. If these are basis vectors

such that Xi = Y i = 1, then ∇∂i∂j = Γ k
ij ∂k. The vector Y is said to be parallel with respect

to the connection ∇ if ∇Y = 0, i.e., ∇XY = 0 ∀X ∈ TS; equivalently, in local coordinates,

∂iY
k + Y jΓ k

ij = 0 . (7.2)

If all basis vectors are parallel with respect to a coordinate system [ξi], then the latter is an

affine coordinate system for ∇. A connection ∇ which admits such an affine parametrization

is called flat, i.e., the manifold S is flat with respect to ∇.

Now, with respect to a Riemannian metric g, one defines

Γij,k = 〈∇∂i∂j , ∂k〉 = Γ l
ij glk , (7.3)

which defines a symmetric connection, i.e., gij = gji. If, in addition, ∇ satisfies

Z〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉 ∀X,Y, Z ∈ TS , (7.4)

or, equivalently,

∂kgij = Γki,j + Γkj,i , (7.5)

where gij = 〈∂i, ∂j〉, then ∇ is a metric connection with respect to the Riemannian metric g.

Connections which are both metric and symmetric are Riemannian.

The above describes the familiar 0-connection, henceforth denoted ∇(0), with associated

connection coefficients Γ
(0)
ij,k. The significance of such connections in physics – and Riemannian

geometry more generally – is due to the fact that under a metric connection, parallel transport

of two vectors preserves the inner product. However, the natural connections on statistical

manifolds are generically non-metric, as we shall now explain.

If S = {pξ} is an n-dimensional model as above, we may define the n3 functions Γ
(α)
ij,k

which map each point in ξ to(
Γ

(α)
ij,k

)
ξ
≡ Eξ

[(
∂i∂j`ξ +

1− α
2

∂i`ξ∂j`ξ

)
(∂k`ξ)

]
, (7.6)

where α ∈ R. This defines an affine connection ∇(α) on S via

〈∇(α)
∂i
∂j , ∂k〉 = Γ

(α)
ij,k , (7.7)

where g = 〈·, ·〉 is the Fisher metric (2.3). ∇(α) is called the α-connection, and accordingly

terms like α-flat, α-affine, α-parallel, etc. denote the corresponding notions with respect to

this connection. Note that when α = 0 we recover the familiar metric connection above.

Indeed, observe that

∂kgij = ∂kEξ[∂i`ξ∂j`ξ]

= Eξ[(∂k∂i`ξ) (∂j`ξ)] + Eξ[(∂i`ξ) (∂k∂j`ξ)] + Eξ[(∂i`ξ) (∂j`ξ) (∂k`ξ)]

= Γ
(0)
ki,j + Γ

(0)
kj,i ,

(7.8)
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cf. (7.5). Thus, while ∇(α) is symmetric for any value of α by definition (cf. (7.7) and (7.3)),

only the special case α = 0 defines a Riemannian connection ∇(0) with respect to the Fisher

metric.

Physically, the significance of the 1-connection lies in the fact that it is intimately related

to the Kullback-Leibler divergence or relative entropy. As explained in [17], one can introduce

a class of distance-like measures called α-divergences, each of which is naturally associated

with the corresponding α-connection with respect to g. For α = 1, this is the familiar relative

entropy,

D(p||q) =

∫
dx p(x) ln

p(x)

q(x)
, (7.9)

where p, q are two points on the manifold S, i.e., two different probability distributions.

Due to the asymmetry, the divergence is not a true distance metric, but can be seen to be

intimately related to the Fisher metric by considering the divergence between infinitesimally

separated distributions p = p(x; θ) and q = p(x; θ′), where

p(x; θ′) = p(x; θ) + ∆θi∂ip(x; θ) + . . . , (7.10)

where ∆θi = (θ′ − θ)i is some infinitesimal change in the ith direction. Since the relative

entropy is 0 to leading order in this perturbation, the series expansion up to second order

reads

D
(
p(θ); p(θ′)

)
=

1

2
∆θi∆θjgij + . . . , (7.11)

where

gij = ∂i∂jD
(
p(θ); p(θ′)

)
(7.12)

is the Fisher metric introduced above. Thus the curvature induced from the 1-connection is

in some sense the natural notion of “statistical curvature” appropriate to the manifold S.

Additionally, the 1-connection is intimately associated with the exponential families intro-

duced in section 2.1, namely that the canonical coordinates [θi] provide a 1-affine coordinate

system, with respect to which S is 1-flat. To see this, observe that

∂i`(x; θ) = Fi(x)− ∂iψ(θ) =⇒ ∂i∂j`(x; θ) = −∂i∂jψ(θ) . (7.13)

This implies that (
Γ

(1)
ij,k

)
θ

= Eθ[(∂i∂j`θ) (∂k`θ)] = −∂i∂jψ(θ)Eθ[∂k`θ] = 0 , (7.14)

such that the curvature vanishes identically in this case.

As mentioned above, non-interacting theories are only flat in the sense of 1-flatness, cf. the

Gaussian example in section 2.2. But this same flatness holds for any model that can be put

in the form of an exponential family, including the Ising model on theory space spanned by

its couplings that we discussed above. Furthermore, we found that for the non-interacting

Gaussian theory, the usual 0-curvature is a negative constant, while for the Ising model, it

changes depending on the values of the couplings. It remains an open question as to precisely
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what information about the underlying physical theory is encoded in the different curvatures.

For example, the divergence in the 0-curvature of the Ising model correctly captures the phase

transition; however, note that the 1-curvature remains zero even along this critical line, and

is therefore completely insensitive to the critical behaviour. An important question for the

future is thus to determine which physical behaviour is captured by the different curvatures.

As a noteworthy fact in view of establishing new field theory/gravity dualities, we point

out that for non-metric curvatures, in 2+1 dimensions a gravity action may be obtained from

the Chern-Simons action

S =
1

4π
tr

∫ (
Γ ∧ dΓ +

2

3
Γ ∧ Γ ∧ Γ

)
, (7.15)

for which the equation of motion implies that the covariant derivative of the curvature van-

ishes,

dΓ + Γ ∧ Γ = 0 . (7.16)

Obviously, the case (7.14) in which the 1-curvature vanishes itself is a special solution to

the more general equation of motion (7.16). This suggests a possible duality between field

theories leading to an exponential family and gravity actions involving non-metric curvatures.

8 Discussion

In this paper, we have collected and discussed a number of general lessons that we feel

are important in the application of information geometry to quantum field theory and to

the AdS/CFT correspondence. Our discussion was framed around some simple examples:

exponential families of probability distributions (of which the Gaussian is a representative

member), scalar field instantons, and the 2d classical Ising model on a square lattice and its

mapping to the theory of free massive Majorana fermions. For clarity, we enumerate these

general lessons here:

1. Infinitely many different probability distributions give the same Fisher metric. The

Fisher metric inherits the symmetries of the probability distribution, but the probability

distribution does not necessarily need to enjoy all the symmetries of the Fisher metric.

In many of the cases studied in the literature, the probability distribution enjoys

precisely the translation and scaling symmetries that suffice to force the Fisher metric

to be AdS. In the light of our investigations, it is conceivable that there are other

dualities relating quantum field theories to geometries. However, the point raised above

has to be taken into account when studying these, and of course the most relevant

question is what determines the dynamics of the dual gravity theory.

2. There are two basic ways of applying information geometry to quantum field theories:

one can compute a metric on the space of theories parametrized by coupling constants

or on the space of states of a given theory with a fixed set of coupling constants.
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For example, saying that the Fisher metric on a free real massive scalar field is AdS2

is ambiguous and potentially misleading. This happens to be the Fisher metric on a

particular set of coherent states parametrized by one complex coefficient [50], but is

unrelated to the Fisher metric on the space of such theories parametrized by the mass.

Which prescription one uses depends on what one wishes to study, and it is important

to keep the distinction in mind.

3. The Fisher metric on a set of states of a quantum field theory is sensitive to whether

or not the theory has a stable potential.

We demonstrated this phenomenon with the example of a massless real scalar field

in four Euclidean dimensions with an inverted φ4 potential. We considered the moduli

space of instantons for this theory, parametrized by the center and width of the in-

stanton. Symmetry arguments along the lines of point 1 above imply that the Fisher

metric ought to be AdS5, and this can indeed be arranged to be the real part of the

metric. However, the Fisher metric is necessarily complex in this case and thus cannot

be considered real Euclidean AdS5.

4. There are many different connections one can define in information geometry, most of

which are not metric compatible with respect to the Fisher metric.

This technical distinction is obscured in some of the existing literature, both in recent

physics works and older works in statistics while the basics of information geometry

were still under development. It is relevant in light of claims that free theories lead

to flat geometries, and a finer appreciation of these various curvature notions may be

important for determining precisely what information about the underlying physical

theory is encoded in the geometry.

Finally, let us remark on a couple interesting and potentially fruitful connections between

information geometry and holography, namely holographic RG and complexity:

Holographic RG

Intuitively, the flow along the RG can be thought of as a coarse-graining of degrees of freedom

from the UV to the IR. Consequently, if one considers two nearby theories in the UV, more

and more measurements will be necessary to distinguish them as one flows to the IR, cf. the

intuition below (2.19). That is, the inability to probe fine-grained correlators implies a loss of

distinguishability between nearby theories. In [40], this idea was made more precise by cal-

culating the distance between quantum field theories using the Zamolodchikov metric, which

is proportional to the Fisher metric studied here. In the context of the emergent spacetime

or “it from qubit” paradigm, in which one takes the boundary CFT as ontologically prior

and attempts to derive the bulk AdS along with its dynamics, this line of reasoning suggests

that the classical spacetime deep in the IR may result from a coarse-graining procedure over

suitably-parametrized UV theories. A related observation was made in [32] where it was
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suggested that the expectation value in the Fisher metric may be thought of as a statistical

average over quantum fluctuations that gives rise to the classical spacetime. Thus, despite

the cautionary lessons above, we regard it as a very interesting open question as to whether

the connection between the information content of the field theory and the geometry result-

ing from the Fisher metric (or its quantum analogues) can be utilized to shed further light

on gauge/gravity duality, and perhaps lead to “information/geometry” dualities in a wider

context.

Complexity

Another potential application is in generalizing holographic complexity [41] to interacting and

ultimately strongly coupled theories. While a great deal of exciting progress has been made

in free theories (see [52–59] and related work), and attempts have been made to go beyond

this restriction (see in particular [60], as well as [61–64]), a satisfying prescription for defining

and working with complexity in holographic CFTs remains elusive. However, the basic idea

underlying existing approaches is to geometrize the problem, and define complexity in terms

of the distance between quantum states. Insofar as information geometry already provides

what is in some sense the intrinsic geometry for a given distribution, it is therefore natural to

ask whether this framework can be used to define complexity in general theories, including

holographic CFTs.

In principle at least, one can already do this for any of the models considered above. For

example, we could use the results of section 5 to define complexity for the 2d Ising model as the

minimum geodesic distance between theories with different couplings. Practically however,

the metric is so unwieldy that we could only proceed with our curvature calculation numer-

ically, and even an approximate analytical expression for the geodesics seems beyond reach.

In the case of AdS/CFT, one again encounters the question of how to suitably parametrize

the boundary theory in order to apply this framework, which may largely determine the phys-

ical meaning of the results. One would also need to contend with the first lesson in the list

above, namely that very different distributions – and hence, states/theories – may yield the

same geometry, and hence the same complexity. Whether this is because the Fisher metric

is not a sufficiently refined means of probing these theories, or hints at some deep connection

between them, remains to be seen. Nonetheless, in light of the significant efforts to quantify

complexity seen in the past couple years, it seems worth investigating whether methods from

information geometry can be fruitfully applied to go beyond the limits of current approaches.
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