1,910 research outputs found

    Processing of complex host blends in the moth antennal lobe

    Get PDF
    The world is a cacophony of scent. Odors are often complex mixtures of compounds that create a spatially and temporally dynamic olfactory environment through which animals navigate. An animal’s ability to perform odor-mediated behavior requires the olfactory system to process and reliably identify complex volatile signals in a constantly changing background. The main challenge of my study was to reveal how complex odor information is processed in the insect olfactory system. In my thesis, I investigated odor blend processing at multiple levels in the olfactory system of the hawk moth, Manduca sexta. Using a novel multicomponent stimulus device and combined neuro-physiological techniques, I show that odor mixture processing in the moth brain is a highly combinatorial, non-linear integration process. In insects, the initial representation of odors detected by the antenna occurs in the first olfactory center of the brain, the antennal lobe (AL); the insect analog of the mammalian olfactory bulb. Afferent input (OSNs) is modified via interneuronal connections (LNs) and the resultant representation is carried by projection neurons (PNs, Output) to higher order brain centers. Accordingly, the antennal lobe representation of an odor mixture may either retain the single-odor information of blend components, or reveal non-linear interactions due to processing in the AL network. My combined physiological approach revealed high levels of across-fiber patterning within the antennal lobe establishing a unique blend percept separate from individual component identities as early as the first olfactory processing stage, the antennal lobe. Thus, analysis of blend input from sensory neurons (OSNs) cannot unambiguously predict AL output on any spatial or temporal scale. Combinatorial coding, shaped by the local network, may facilitate signal processing from a “noisy” periphery. Consequently, a minimum of broadly tuned receptors would be necessary to detect a multitude of complex blends

    Odour perception in the codling moth Cydia pomonella L.

    Get PDF
    The codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae) is a renowned pest in apple, pear and walnut orchards, and its activities are in large guided by volatile odours as sensory cues. This thesis spans over a large part of the olfactory chain of events in the codling moth, from brain to behaviour. The main emphasis was placed on the detection of plant odours, and some of the works presented are novel to codling moth research. The volatiles emitted by host-plant species were analysed, revealing variations in the odour profiles both between species of host plants and at different phenological stages of a host plant, which indicates that females are flexible in their behavioural response to host odours. A first step was taken to map the antennal olfactory receptor neurons and their specificity, where several behaviourally active compounds were found to be detected by neurons housed in sensilla auricillica, one of the morphological types of sensilla found on the antenna of the moth. In a study of the antennal lobe, the primary integration centre for odour processing in the insect brain, we describe the three dimensional structure of the array of olfactory glomeruli of both sexes. Behavioural experiments show that both males and females are attracted to plant odours, and that host recognition in codling moths are encoded not by single compounds but by a blend of volatiles. Taken together, the results presented in this thesis provide new insights into moth olfaction and odour-dependent behaviour in general, and into that of the codling moth in particular

    Neuroethology of olfactory-guided behavior and its potential application in the control of harmful insects

    Get PDF
    Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of "semiochemicals", which are natural volatile and non-volatile substances involved in the intra-and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and-kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies.Fil: Reisenman, Carolina Esther. University of California at Berkeley; Estados UnidosFil: Lei, Hong. University of Arizona; Estados UnidosFil: Guerenstein, Pablo Gustavo. Provincia de Entre RĂ­os. Centro de Investigaciones CientĂ­ficas y Transferencia de TecnologĂ­a a la ProducciĂłn. Universidad AutĂłnoma de Entre RĂ­os. Centro de Investigaciones CientĂ­ficas y Transferencia de TecnologĂ­a a la ProducciĂłn. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Centro de Investigaciones CientĂ­ficas y Transferencia de TecnologĂ­a a la ProducciĂłn; Argentina. Universidad Nacional de Entre RĂ­os. Facultad de IngenierĂ­a; Argentin

    Structure and function of the moth mushroom body

    Get PDF
    The mushroom bodies are paired, high-order neuropils in the insect brain involved in complex functions such as learning and memory, sensory integration, context recognition and olfactory processing. This thesis explores the structure of the mushroom bodies in the noctuid moth Spodoptera littoralis using neuroanatomical staining methods, immunocytochemistry and electron microscopy, and investigates how the intrinsic neurons of the mushroom body, the Kenyon cells, respond to olfactory stimulation of the antennae using whole-cell patch clamp technique. The mushroom body in S. littoralis contains about 4,000 Kenyon cells, and consists of a calyx, pedunculus and two lobes, one medial and one vertical. The calyx houses dendritic branches of Kenyon cells and the pedunculus and lobes contain the axons and terminals of these neurons respectively. The calyx is doubled and concentrically divided into a broad peripheral zone, which receives input from antennal lobe projection neurons, and a narrow inner zone, which receives yet unidentified input. The lobes are parsed into three longitudinal divisions, which contain a separate subset of Kenyon cells each. The Kenyon cells are divided into three morphological classes, I-III. Class I Kenyon cells have widely branching spiny dendritic arborisations in both zones of the calyx and occupy the two most posterior subdivisions of the lobes called α/β and α´/β´. Class II Kenyon cells have narrow clawed dendritic trees in the calyx and invade the most anterior division in the lobes, called γ. Class III Kenyon cells have clawed, diffusely branching dendrites in the calyx and provide a separate system of axons and terminal branches, partly detached from the rest of the mushroom body, called the Y tract and lobelets. Kenyon cells within the classes display differential labeling with antisera against neuroactive substances. Kenyon cells make synaptic contact with one another and with other neuron types in the mushroom body. Extrinsic inhibitory and putative modulatory neurons were identified. Whole-cell patch clamp recordings revealed that Kenyon cells exhibit broadly tuned subthreshold activation by odor stimulation and a few cells responded with action potentials to specific biologically relevant odor combinations

    The chemical ecology of armyworms

    Get PDF
    Moths of the genus Spodoptera are economically important pest insects. The necessity to develop novel control strategies which may be included in integrated pest management schemes has led to the study of chemical communication in several species within the genus. The polyphagous nature of most Spodoptera species makes it an interesting model to study the way in which different odor profiles are processed and interpreted by the insect brain and how this reflects upon the behavior and ecological interactions which may be of importance in agricultural systems. As such, armyworms have become a model organism in olfactory insect chemical ecology. Here, I attempt to give an overview of what is known about Spodptera chemical ecology to date and present perspectives and directions for future research

    Competition-based model of pheromone component ratio detection in the moth

    Get PDF
    For some moth species, especially those closely interrelated and sympatric, recognizing a specific pheromone component concentration ratio is essential for males to successfully locate conspecific females. We propose and determine the properties of a minimalist competition-based feed-forward neuronal model capable of detecting a certain ratio of pheromone components independently of overall concentration. This model represents an elementary recognition unit for the ratio of binary mixtures which we propose is entirely contained in the macroglomerular complex (MGC) of the male moth. A set of such units, along with projection neurons (PNs), can provide the input to higher brain centres. We found that (1) accuracy is mainly achieved by maintaining a certain ratio of connection strengths between olfactory receptor neurons (ORN) and local neurons (LN), much less by properties of the interconnections between the competing LNs proper. An exception to this rule is that it is beneficial if connections between generalist LNs (i.e. excited by either pheromone component) and specialist LNs (i.e. excited by one component only) have the same strength as the reciprocal specialist to generalist connections. (2) successful ratio recognition is achieved using latency-to-first-spike in the LN populations which, in contrast to expectations with a population rate code, leads to a broadening of responses for higher overall concentrations consistent with experimental observations. (3) when longer durations of the competition between LNs were observed it did not lead to higher recognition accuracy

    Olfaction in mosquitoes

    Get PDF
    Female mosquitoes are vectors of diseases, affecting both livestock and humans. The host-seeking and identification behaviors of mosquitoes are mediated mainly by olfactory cues. The peripheral olfactory organs of mosquitoes which perceive olfactory cues are the antennae and maxillary palps. These appendages bear numerous hair shaped structures, sensilla, in which olfactory receptor neurons (ORNs) are housed. The ORNs detect and discriminate various odorant molecules and send information regarding odor quality, quantity and spatio-temporal patterns to the central olfactory system in the brain for further analysis. The first goal of this study was to investigate the neuroanatomy of the mosquito central olfactory system. Using different staining techniques, the neuronal architecture of the deutocerebrum as well as 3D reconstructions of antennal lobe (AL) glomeruli were depicted for both sexes of the Afrcian malaria mosquito, Anopheles gambiae and the yellow fever mosquito, Aedes aegypti. To study how mosquitoes detect olfactory cues, single sensillum recordings (SSRs) were performed, which allowed me to investigate electrophysiological properties of individual ORNs housed in four morphological types of the most abundant olfactory sensilla, s. trichodea. I was able to identify 11 functional types which their ORNs displayed distinct responses to a set of compounds. As part of this study, axons of functionally defined ORNs were traced by neurobiotin to indicate which glomeruli they targeted. This resulted in a functional map of AL glomeruli. The map indicated that different functional types of ORNs converged onto different spatially fixed glomeruli. My next step was to identify novel biologically active compounds for the ORNs using gas chromatography coupled SSRs (GC-SSRs). Headspace odors from different human body parts, i.e. armpit, feet and trunk regions as well as from a plant used as a mosquito repellent (Nepeta faassenii) were collected, extracted and eventually injected onto the GC-column. I found that some of the extract components elicited responses in previously defined ORNs as well as in ORNs of the intermediate sensilla. Some of the compounds, which were subsequently identified by using GC-mass spectrometry (GC-MS) were heptanal, octanal, nonanal and decanal
    • …
    corecore