208 research outputs found

    Multi-stage Suture Detection for Robot Assisted Anastomosis based on Deep Learning

    Full text link
    In robotic surgery, task automation and learning from demonstration combined with human supervision is an emerging trend for many new surgical robot platforms. One such task is automated anastomosis, which requires bimanual needle handling and suture detection. Due to the complexity of the surgical environment and varying patient anatomies, reliable suture detection is difficult, which is further complicated by occlusion and thread topologies. In this paper, we propose a multi-stage framework for suture thread detection based on deep learning. Fully convolutional neural networks are used to obtain the initial detection and the overlapping status of suture thread, which are later fused with the original image to learn a gradient road map of the thread. Based on the gradient road map, multiple segments of the thread are extracted and linked to form the whole thread using a curvilinear structure detector. Experiments on two different types of sutures demonstrate the accuracy of the proposed framework.Comment: Submitted to ICRA 201

    UNet-2022: Exploring Dynamics in Non-isomorphic Architecture

    Full text link
    Recent medical image segmentation models are mostly hybrid, which integrate self-attention and convolution layers into the non-isomorphic architecture. However, one potential drawback of these approaches is that they failed to provide an intuitive explanation of why this hybrid combination manner is beneficial, making it difficult for subsequent work to make improvements on top of them. To address this issue, we first analyze the differences between the weight allocation mechanisms of the self-attention and convolution. Based on this analysis, we propose to construct a parallel non-isomorphic block that takes the advantages of self-attention and convolution with simple parallelization. We name the resulting U-shape segmentation model as UNet-2022. In experiments, UNet-2022 obviously outperforms its counterparts in a range segmentation tasks, including abdominal multi-organ segmentation, automatic cardiac diagnosis, neural structures segmentation, and skin lesion segmentation, sometimes surpassing the best performing baseline by 4%. Specifically, UNet-2022 surpasses nnUNet, the most recognized segmentation model at present, by large margins. These phenomena indicate the potential of UNet-2022 to become the model of choice for medical image segmentation.Comment: Code is available at https://bit.ly/3ggyD5

    Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries

    Get PDF
    This two-volume set LNCS 12962 and 12963 constitutes the thoroughly refereed proceedings of the 7th International MICCAI Brainlesion Workshop, BrainLes 2021, as well as the RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge, the Federated Tumor Segmentation (FeTS) Challenge, the Cross-Modality Domain Adaptation (CrossMoDA) Challenge, and the challenge on Quantification of Uncertainties in Biomedical Image Quantification (QUBIQ). These were held jointly at the 23rd Medical Image Computing for Computer Assisted Intervention Conference, MICCAI 2020, in September 2021. The 91 revised papers presented in these volumes were selected form 151 submissions. Due to COVID-19 pandemic the conference was held virtually. This is an open access book

    A review of technical factors to consider when designing neural networks for semantic segmentation of Earth Observation imagery

    Full text link
    Semantic segmentation (classification) of Earth Observation imagery is a crucial task in remote sensing. This paper presents a comprehensive review of technical factors to consider when designing neural networks for this purpose. The review focuses on Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and transformer models, discussing prominent design patterns for these ANN families and their implications for semantic segmentation. Common pre-processing techniques for ensuring optimal data preparation are also covered. These include methods for image normalization and chipping, as well as strategies for addressing data imbalance in training samples, and techniques for overcoming limited data, including augmentation techniques, transfer learning, and domain adaptation. By encompassing both the technical aspects of neural network design and the data-related considerations, this review provides researchers and practitioners with a comprehensive and up-to-date understanding of the factors involved in designing effective neural networks for semantic segmentation of Earth Observation imagery.Comment: 145 pages with 32 figure

    On Improving the Efficiency of Tensor Voting

    Full text link

    Neural Networks for Constitutive Modeling -- From Universal Function Approximators to Advanced Models and the Integration of Physics

    Full text link
    Analyzing and modeling the constitutive behavior of materials is a core area in materials sciences and a prerequisite for conducting numerical simulations in which the material behavior plays a central role. Constitutive models have been developed since the beginning of the 19th century and are still under constant development. Besides physics-motivated and phenomenological models, during the last decades, the field of constitutive modeling was enriched by the development of machine learning-based constitutive models, especially by using neural networks. The latter is the focus of the present review, which aims to give an overview of neural networks-based constitutive models from a methodical perspective. The review summarizes and compares numerous conceptually different neural networks-based approaches for constitutive modeling including neural networks used as universal function approximators, advanced neural network models and neural network approaches with integrated physical knowledge. The upcoming of these methods is in-turn closely related to advances in the area of computer sciences, what further adds a chronological aspect to this review. We conclude this review paper with important challenges in the field of learning constitutive relations that need to be tackled in the near future
    • …
    corecore