5 research outputs found

    Metaheuristics for Traffic Control and Optimization: Current Challenges and Prospects

    Get PDF
    Intelligent traffic control at signalized intersections in urban areas is vital for mitigating congestion and ensuring sustainable traffic operations. Poor traffic management at road intersections may lead to numerous issues such as increased fuel consumption, high emissions, low travel speeds, excessive delays, and vehicular stops. The methods employed for traffic signal control play a crucial role in evaluating the quality of traffic operations. Existing literature is abundant, with studies focusing on applying regression and probability-based methods for traffic light control. However, these methods have several shortcomings and can not be relied on for heterogeneous traffic conditions in complex urban networks. With rapid advances in communication and information technologies in recent years, various metaheuristics-based techniques have emerged on the horizon of signal control optimization for real-time intelligent traffic management. This study critically reviews the latest advancements in swarm intelligence and evolutionary techniques applied to traffic control and optimization in urban networks. The surveyed literature is classified according to the nature of the metaheuristic used, considered optimization objectives, and signal control parameters. The pros and cons of each method are also highlighted. The study provides current challenges, prospects, and outlook for future research based on gaps identified through a comprehensive literature review

    Adaptive multi-population inflationary differential evolution

    Get PDF
    This paper proposes a multi-population adaptive version of inflationary differential evolution algorithm. Inflationary differential evolution algorithm (IDEA) combines basic differential evolution (DE) with some of the restart and local search mechanisms of Monotonic Basin Hopping (MBH). In the adaptive version presented in this paper, the DE parameters CR and F are automatically adapted together with the size of the local restart bubble and the number of local restarts of MBH. The proposed algorithm implements a simple but effective mechanism to avoid multiple detections of the same local minima. The novel mechanism allows the algorithm to decide whether to start or not a local search. The algorithm has been extensively tested over more than fifty test functions from the competitions of the Congress on Evolutionary Computation (CEC), CEC 2005, CEC 2011 and CEC 2014, and compared against all the algorithms participating in those competitions. For each test function, the paper reports best, worst, median, mean and standard deviation values of the best minimum found by the algorithm. Comparisons with other algorithms participating in the CEC competitions are presented in terms of relative ranking, Wilcoxon tests and success rates. For completeness, the paper presents also the single population adaptive IDEA, that can adapt only CR and F, and shows that this simpler version can outperform the multi-population one if the radius of the restart bubble and the number of restarts are properly chosen

    Fuel Cell Renewable Hybrid Power Systems

    Get PDF
    Climate change is becoming visible today, and so this book—through including innovative solutions and experimental research as well as state-of-the-art studies in challenging areas related to sustainable energy development based on hybrid energy systems that combine renewable energy systems with fuel cells—represents a useful resource for researchers in these fields. In this context, hydrogen fuel cell technology is one of the alternative solutions for the development of future clean energy systems. As this book presents the latest solutions, readers working in research areas related to the above are invited to read it

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms
    corecore