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Abstract
This paper proposes a multi-population adaptive version of inflationary differential evolution algorithm. Inflationary dif-
ferential evolution algorithm (IDEA) combines basic differential evolution (DE) with some of the restart and local search
mechanisms of Monotonic Basin Hopping (MBH). In the adaptive version presented in this paper, the DE parameters CR and
F are automatically adapted together with the size of the local restart bubble and the number of local restarts of MBH. The
proposed algorithm implements a simple but effective mechanism to avoid multiple detections of the same local minima. The
novel mechanism allows the algorithm to decide whether to start or not a local search. The algorithm has been extensively
tested over more than fifty test functions from the competitions of the Congress on Evolutionary Computation (CEC), CEC
2005, CEC 2011 and CEC 2014, and compared against all the algorithms participating in those competitions. For each test
function, the paper reports best, worst, median, mean and standard deviation values of the best minimum found by the algo-
rithm. Comparisons with other algorithms participating in the CEC competitions are presented in terms of relative ranking,
Wilcoxon tests and success rates. For completeness, the paper presents also the single population adaptive IDEA, that can
adapt only CR and F , and shows that this simpler version can outperform the multi-population one if the radius of the restart
bubble and the number of restarts are properly chosen.

Keywords Global optimisation · Differential evolution · Multi-population algorithm · Adaptive algorithm

1 Introduction

Differential evolution (DE), proposed by Price et al. (2006),
is a well-known population-based evolutionary algorithm
for solving global optimisation problems over continuous
spaces. Literature indicates that DE exhibits very good per-
formance over a wide variety of optimisation problems
(Das and Suganthan 2011). However, although being a very
efficient optimiser, its local search ability has long been
questioned and work has been done to improve its local con-
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vergence by combiningDEwith local optimisation strategies
(Qing 2010).

In previous works by the authors, Locatelli and Vasile
(2015) and Vasile et al. (2011), it was demonstrated that DE
can converge to a fixed point, a level set or a hyperplane that
does not contain the global minimum. The collapse of the
population to a fixed point or a neighbourhood of a fixed
point from which DE cannot escape was one of the motiva-
tion for the development of inflationary differential evolution
algorithm (Vasile et al. 2011).

IDEA is based on the hybridisation of DEwith the restart-
ing procedure of monotonic basin hopping (MBH) (Wales
and Doye 1997); it implements both a local restart in the
neighbourhood of a local minimum and a global restart in
the whole search space. IDEA was shown to give better
results than a simple DE, but its performance is depen-
dent upon the parameters controlling both the DE and MBH
heuristics (Vasile et al. 2011). These parameters are the
crossover probabilityCR, the differentialweight F , the radius
of the local restart bubble δlocal and the number of local
restarts nLR, whose best settings are problem dependent.
Different adaptive mechanisms for adjusting CR and F
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during the search process can be found in the literature,
(Brest et al. 2006, 2013; Liu and Lampinen 2005; Omran
et al. 2005); a parameter-less adaptive evolutionary algorithm
has been presented in Papa (2013). However, no approach
has been proposed so far to adapt δlocal and nLR. In this
paper, we present a simple mechanism to adapt CR and
F within a single population and a multi-population strat-
egy to adapt δlocal and nLR. The multi-population version
of IDEA is in the following called MP-AIDEA (Multi Pop-
ulation Adaptive Inflationary Differential Evolution Algo-
rithm).

The resulting algorithm was extensively tested over 51
test problems from the single objective global optimisation
competitions of the Congress on Evolutionary Computation
(CEC) 2005, 2011 and 2014. Tests to assess the performance
of the algorithm include rankings, Wilcoxon test and suc-
cess rate. It will be shown that the adaptive version of IDEA
always ranks in the first three best algorithms in every com-
petition for every number of dimensions except for the CEC
2014 test set with 30 dimensions. Furthermore, it will be
shown that the simple adaptation of CR and F within a sin-
gle population can outperform the multi-population version
with adaptation of δlocal and nLR if these two parameters are
properly chosen.

This paper extends the work presented in Di Carlo et al.
(2015). In Di Carlo et al. (2015), the basic mechanisms
that constitute MP-AIDEA were introduced, and the per-
formance of MP-AIDEA was measured only by a relative
ranking against other algorithms. This paper provides a more
detailed explanation of all the mechanisms and heuristics
insideMP-AIDEA;moreover, it presents an extensive empir-
ical assessment of its performance, using several metrics in
addition to the relative ranking. As part of this extensive
performance evaluation, we compare MP-AIDEA against a
number of other algorithms and a single population version
ofMP-AIDEAwith no adaptive local restart. Detailed results
obtained for each test functions are also presented, so that the
paper can be used as a reference for comparison against other
algorithms.

The paper starts stating the problem we are trying to solve
in Sect. 2 and briefly introducing the basic principles and fun-
damental theoretical developments underneath inflationary
differential evolution in Sect. 3. The adaptation mechanisms
are presented, together with the resulting adaptive multi-
population version of IDEA, MP-AIDEA, in Sect. 5. The
test cases are presented in Sect. 6, and the obtained results
are presented in Sect. 6.1. Finally, the paper presents the
results of all the comparative tests in Sects. 6.2, 6.3 and 6.4.
Section 7 concludes the paper.

2 Problem statement

This paper is concerned with the following class of global
minimisation problems with box constraints:

min
x∈B f (x) (1)

with f : B ⊆ R
nD → R, nD the number of dimensions and

the box B defined by the upper and lower boundaries xlower ≤
x ≤ xupper. In the following, we will use a gradient-based
local search algorithm; therefore, we further require that f ∈
C2(B). Note, however, that this is not a strict requirement as
we can show that the algorithm can work also when a finite
number of non-differentiable points exist.

3 Inflationary differential evolution

This section briefly recalls the working principles of infla-
tionary differential evolution and presents the parameters that
the algorithm proposed in this paper adapts. Following the
notation introduced in Vasile et al. (2011), we express the
general DE process as a discrete dynamical system. The gov-
erning equation, for the i-th individual at generation k, is
expressed as:

xi,k+1 = xi,k + S(xi,k + ui,k, xi,k)ui,k (2)

with

ui,k = e
[
Gxr1,k + (1 − G)xi,k + F(xr2,k − xr3,k)

+ (1 − G)F(xbest,k − xi,k)
] (3)

where G can be either 0 or 1 [with G = 1 corresponding
to the DE strategy DE/rand and G = 0 corresponding to
the DE strategy DE/current-to-best (Price et al. 2006)]. In
Eq. (3), r1, r2 and r3 are integer numbers randomly chosen in
the population, and e is a mask containing random numbers
of 0 and 1 according to:

et =
{
1 ⇒ U ≤ CR
0 ⇒ U > CR

t = 1, . . . , nD (4)

U is a random number taken from a random uniform distri-
bution [0, 1]. The product between e and the term in square
brackets in Eq. (3) has to be intended component-wise. In
this work, given ut,i,k , the t-th component of the trial vector
ui,k , the following correction is applied to satisfy the box
constraints (Zhang and Sanderson 2009):
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ut,i,k =
{(

xt,i,k + xt,lower
)
/2, if ut,i,k < xt,lower(

xt,i,k + xt,upper
)
/2, if ut,i,k > xt,upper

(5)

The selection function S is defined as:

S(xi,k + ui,k, xi,k) =
{ 1 if f (xi,k + ui,k) < f (xi,k)
0 otherwise

(6)

In the general case in which the indices r1, r2 and r3 can
assume any value, in Vasile et al. (2011) it was demonstrated
that the population can converge to a fixed point different
from a local minimum or to a level set. Furthermore, in
Locatelli and Vasile (2015) it was demonstrated that DE can
converge to a hyperplane that does not contain the global
minimum. Finally, consider the following proposition.

Proposition 1 Consider the subsetΨ = {x ∈ B : f (x) ≤ f̄ }
and the superset φ such that:

1. Ψ ⊂ φ

2. xi,k+1 ∈ φ,∀i
3. ∀y ∈ φ \ Ψ , f (y) > f̄

then if the population at iteration k is entirely contained in
Ψ it cannot escape from Ψ at any future iteration.

Proof The proof descends from the definition of S. Sup-
pose that a candidate individual xi,k+1 was generated bymap
(2) then, because of point 3 of the proposition, it would be
rejected by the selection operator. 	

Therefore, when the population contracts within a ball Bc ⊆
Ψ of radius ρl, DE can only converge to a point or a subset
within Bc. We call ρl the contraction limit, in the following.

In inflationary differential evolution, the DE heuristics is
iterated until the population reaches the contraction limit. A
local search is then started from the best individual in the pop-
ulation xbest, the corresponding local minimum xLM is saved
in an archive of localminima A and the population is restarted
in a bubble BR of radius δlocal around the localminimum xLM.
This mechanisms is borrowed from the basic logic under-
neath monotonic basin hopping (Wales and Doye 1997). To
assess if the contraction condition is satisfied, the maximum
distance between all possible combinations of individuals of
the population at generation k, ρ(k), is computed:

ρ(k) = max
(||xi,k − xl,k ||

)
i, l = 1, . . . , Npop (7)

where Npop is the number of individuals in the popula-
tion. The contraction is verified when ρ(k) ≤ ρ̄ρmax, where
ρmax = maxk ρ(k) is the maximum value of ρ ever recorded
until generation k and ρ̄ is one of the parameters of the algo-
rithm, the contraction threshold. This contraction criterion

is consistent with Proposition 1 under the assumption that
ρl = ρ̄ρmax.

After a number nLR of such local restarts, without any
improvement of the current best solution, the archive A col-
lects all the local minima found so far. At this point, the
population is restarted globally in the search space so that
every individual is initially at a distance

√
nDδglobal from the

centres of the clusters of the local minima in A. During local
restarts, the most important information is preserved in the
local minimum. The assumption is that the basin of attrac-
tion of that local minimum has already been explored and
that exploration led to the convergence of the population to
Bc. When the population is restarted globally the essential
information, all the local minima, is stored in the archive A.
Here the assumption is that IDEA has completely explored
a funnel structure resulting in a cluster of minima.

These restart procedures were proven to be very effective
in a series of difficult real problems in which the landscape
presentsmultiple funnels (seeVasile et al. 2011 for additional
details).

The complete inflationary differential evolution process
with trial vector (3) is governed by the following key param-
eters: Npop, CR and F , G, ρ̄, δlocal, nLR, δglobal. From
experience, we know that δglobal is not a critical parameter in
most of the cases while CR, F , δlocal and nLR play a signif-
icant role and are not always easy to define. The parameters
CR and F are applied to update each individual in a popu-
lation while δlocal and nLR are applied to restart the whole
population. Therefore, in this paper we propose two adapta-
tion mechanisms, one for CR and F and one for δlocal and
nLR. In particular, the adaptation mechanisms of CR, F and
δlocal are such as to result in the definition of numerical val-
ues for these parameters, to be used by the algorithm. On
the contrary, the use of nLR is replaced by a mechanism that
allows the algorithm to decide when to perform a local or
global restart, so that the definition of a numerical value for
nLR is not required anymore.

4 Adaptationmechanisms

Because of the very nature of CR and F , δlocal and nLR, the
automatic adaptation of CR and F requires only the evalua-
tion of the success of each candidate increment ui,k . On the
other hand, the adaptation of δlocal and nLR requires the eval-
uation of the success of the restart of an entire population.
Therefore, in this paper it is proposed to extend the working
principle of inflationary differential evolution by evolving
npop populations in parallel, where npop is defined a priori.

Each population adapts its own values of CR and F . We
use a stigmergic approach in which the CR and F of each
individual are drawn from a joint probability distribution,
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over a set of possible values of CR and F , that evolves with
the population.

All populations are then concurrently adapting δlocal and
the number of local restarts.More specifically, the adaptation
mechanism of the local restart bubble evolves a probabil-
ity distribution function over a range of possible values of
δlocal. Each population draws values from that probability
distribution and at each local restart increases the probabil-
ity associated to the value of δlocal that led to a transition
from one local minimum to another. The range of δlocal is
also adapted by taking the mean and the minimum distance
among the local minima in A.

The number of local restarts, instead, is dictated by the
contraction of a population within the basin of attraction of
an already identified local minimum. Given a local minimum
xLM ∈ A and a list of nbest,LM best individuals from which
a local search converged to xLM, the size of the basin of
attraction of xLM is defined as

dbasin,LM = min
j

||xbest, j − xLM||, j ∈ 1, ..., nbest,LM (8)

Each local minimum xLM in A, therefore, is associated to
a particular dbasin,LM . Figure 1 illustrates this mechanism.
Once dbasin,LM is estimated, every time the condition ρ

(k)
m ≤

ρ̄ρm,max is satisfied for population m, if the best individual
xbest,m is at a distance lower than dbasin,LM from xLM, then
no local restart is performed but the population is restarted
globally in the search space. The number nbest,LM is set to 4
in this implementation.

The overall algorithm, called Multi-Population Adap-
tive Inflationary Differential Evolutionary Algorithm (MP-
AIDEA), is described in more detail in the following section.

5 Multi-population adaptive inflationary
differential evolution

MP-AIDEA is described in Algorithm 1. Let npop be the
number of populations andm the index identifying each pop-
ulation. With reference to Algorithm 1, after initialisation of
main parameters and functionalities (Algorithm 1, line 1),
MP-AIDEA starts by running npop Differential Evolutions
in parallel, one per population (Algorithm 1, line 3). Dur-
ing each evolution process, the parameters F and CR are
automatically adapted following the approach presented in
Sect. 5.2. When a population m contracts within a ball Bc of
radius ρ̄ ρm,max, the evolution of that population is stopped.
Once all the populations have contracted, the relative posi-
tion of the best individual of each population, xbest,m with
respect to the local minima in A, xLM, is assessed (Algo-
rithm 1, line 7). This step makes use of all the minima found
by all populations and, therefore, it has to be regarded as an

Local 
Minimum

Local search from best individual

Contracted
population

δ local

Local restart

dbasin

Estimation of dbasin

Fig. 1 Identification of the basin of attraction of local minimum xLM

Algorithm 1MP-AIDEA
1: Initialisation (Section 5.1, Algorithm 2)
2: for m ∈ [1, . . . , n pop] do
3: Run Differential Evolution with adaptive CR and F until con-

traction to Bc (Section 5.2, Algorithms 3 and 4)
4: end for
5: for m ∈ [1, . . . , n pop] do
6: xbest,m = argminxm,i∈Pm f (xm,i )

7: if (∀LM : [‖xbest,m−xLM‖ > dbasin,LM or iLM < nbest,LM ])
or A = ∅ then

8: Run local search and find local minimum x(sm )
min,m

9: sm = sm + 1
10: if ∃ LM : ‖x(sm )

min,m − xLM‖ ≤ εΔ then
11: iLM = iLM + 1
12: dbasin,LM = min[dbasin,LM , ||xbest,m − xLM ||]
13: LRm = 1
14: else
15: xLM ← x(sm )

min,m
16: Store local minima xLM in A, compute dbasin,LM =

‖xbest,m − xLM‖
17: LRm = 1
18: end if
19: else
20: LRm = 0
21: end if
22: end for
23: Update distribution of δlocal (Algorithm 6)
24: Restart populations with Algorithm 7 using LRm , δlocal and δglobal

25: If total number of function evaluations is lower than maximum
number of function evaluations, n f eval,max , goto (2)

information sharing mechanism among populations. If the
best individual of population m is not within the basin of
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attraction of any previously detected local minimum (that is,
∀LM : ‖xbest,m − xLM‖ > dbasin,LM ) then a local search is
run (Algorithm 1, line 8) and the resulting local minimum is
stored in the archive A (Algorithm 1, line 16). The flag for
the local restart, LRm , is set to 1. On the contrary, if the best
individual of population m is inside the basin of attraction of
a previously detected local minimum, the local search is not
performed and LRm is set to 0 (Algorithm 1, line 20).

Before running a local or a global restart (Algorithm 1,
line 24), the probability distribution associated to δlocal and its
range are updated (Algorithm 1, line 23). After restarting the
population, if the number of maximum function evaluations,
nfeval,max, is not exceeded, the process restarts from line 2 in
Algorithm 1. Each part of Algorithm 1 is explained in more
details hereafter.

5.1 Initialisation

The steps for the initialisation ofMP-AIDEAare presented in
Algorithm 2.MP-AIDEA starts with the initialisation of npop
populations, with Npop individuals each, in the search space
B. The number of function evaluations for each population
is set to zero, nfeval,m = 0 and ρ̄, δglobal, are initialised to the
values specified by the user. The counter of the number of
local search per population, sm , is set to 0.

Algorithm 2 MP-AIDEA: initialisation
1: Set values for n pop , Npop , ρ̄, δglobal , ε, sm = 0 ∀m ∈ [1, . . . , n pop]

2: Set nfeval,m = 0 and km = 1 (generation number) for each popula-
tions m ∈ [1, . . . , n pop]

3: Initialize population Pm with individuals xm,i ∀m ∈ [1, . . . , n pop]
and ∀i ∈ [1, . . . , Npop]

4: Compute Δ = ‖xupper − xlower‖ where xlower and xupper are the
lower and upper boundaries of the search space

5.2 Differential evolution and the adaptation of CR
and F

For each population m, a DE process is run (Algorithm 3,
line 6), using Equations 2, 3, 4 and 6. The parameter G, in
Equation 3, assumes values equal to 0 or 1 with probabil-
ity 0.5. During the advancement from parents to offspring,
each individual of the population is associated to a differ-
ent value of CR and F , drawn from a distribution CRF(km )

m

(Algorithm 3, lines 1, 2, 3). CRF(km=1)
m is initialised as

a uniform distribution with (nD + 1)2 points in the space
CR ∈ [0.1, 0.99] and F ∈ [−0.5, 1] (Algorithm 3, line 1). A
Gaussian kernel is then allocated to each node and a proba-
bility density function is built by Parzen approach (Minisci
and Vasile 2014). The values of CR and F to be associated
to the individuals of the population are drawn from this dis-

tribution (Algorithm 3, line 4). A change value dd linked to
each kernel is initialised to zero (Algorithm 3, line 3) and is
used during the advancement of the population from parents
to children to adapt CR and F (Algorithm 3, line 8). The
adaptation of CR and F is summarised in Algorithm 4 and
described in the following.

Algorithm 3Differential Evolution with adaptiveCR and F

1: Regular meshes CR and F with (nD + 1)2 points (nD is the dimen-
sionality of the problem) in the space CR ∈ [0.1, 0.99] × F ∈
[−0.5, 1] are created

2: Initialize CRF(km=1)
m with points of the mesh: CRF(km=1)

m,q,1 ← CRq

and CRF(km=1)
m,q,2 ← Fq for all q ∈ [1, . . . , (nD + 1)2]

3: Associate to each row of CRF(km=1)
m an element dd(km=1)

m,q = 0 for
all q ∈ [1, . . . , (nD + 1)2]

4: Sample CR(km )
m and F(km )

m from a bi-variate distribution on the two
dimensional lattice defined by the rows of CRF(km=1)

m
5: for i ∈ [1, . . . , Npop] do
6: x(km+1)

m,i ← DE
(
x(km )
m,i ,CR(km )

m ,F(km )
m

)

7: n f eval,m = n f eval,m + 1

8: Update CRF(km )
m (Algorithm 4)

9: end for
10: km = km + 1
11: Row sort CRF(km+1)

m in terms of dd(km+1)
m values

12: Compute ρ
(km )
m = max(||x(km )

m,i − x(km )
m,l ||) ∀x(km )

m,i , x(km )
m,l ∈ P(km )

m

13: Until ρ(km )
m ≤ ρ̄ · ρm,max ,

where ρm,max = max
[
ρ

(km=1)
m , ρ

(km=2)
m , . . . ρ

(km )
m

]
, or km < 10D,

goto (4)

Algorithm 4 Updating the joint distribution CRF

1: if f (x(km+1)
m,i ) < f (x(km )

m,i ) then

2: Compute d f (km+1)
m,i = || f (x(km+1)

m,i ) − f (x(km )
m,i )|| ∀i ∈

[1, . . . , n pop]
3: for q ∈ [1, . . . , (nD + 1)2] do
4: if ddm,q < d f (km+1)

m,i then

5: CRF(km )
m,q,2 ← F (km )

m,i

6: dd(km )
m,q ← d f (km+1)

m,i

7: if d f (km+1)
m,i > CRC then

8: CRF(km )
m,q,1 ← CR(km )

m,i
9: end if
10: end if
11: end for
12: end if

For each individual i of each population m, the adapta-
tion mechanism for CR and F is started only if the child is
characterised by an objective function value lower than the
parent’s one, that is f (x(km+1)

m,i ) < f (x(km )
m,i ) (Algorithm 4,

line 1). If this condition is verified, the difference in objective
function between parent and child at subsequent generation,
d f (km+1)

m,i = || f (x(km+1)
m,i ) − f (x(km )

m,i )||, is computed (Algo-
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rithm 4, line 2). Then the sorted elements of CRF(km )
m are

sequentially evaluated; the q-th value of CR in CRF(km )
m is

identified as CRF(km )
m,q,1 and the q-th value of F is identified

as CRF(km )
m,q,2. The first time that dd(km )

m,q (the dd value asso-

ciated to the q-th row of CRF(km )
m ) is lower than d f (km+1)

m,i

(Algorithm 4, line 4), the differential weight F (km)
m,i used for

the individual x(km )
m,i substitutes CRF(km )

m,q,2 and d f
(km+1)
m,i sub-

stitutes dd(km )
m,q (Algorithm 4, lines 5 and 6). This is because

F (km )
m,i produced a bigger decrease in the objective function

than CRF(km )
m,q,2 (as shown by d f (km+1)

m,i > dd(km )
m,q ). For CR,

the value associated to x(km )
m,i substitutes CRF(km )

m,q,1 (Algo-

rithm 4, line 8) only if d f (km+1)
m,i is greater than a given value

CRC (Algorithm 4, line 7), (Minisci and Vasile 2014).
The DE stops according to the contraction condition pre-

sented in Sect. 3. In order to prevent an excessive use of
resources when the population partitions, a fail safe crite-
rion was introduced that stops the DE after 10D generations
(Algorithm 3, line 13).

5.3 Local search and restart mechanisms

After the evolution of all populations has stopped, MP-
AIDEA checks if the best individual of each population is
inside the basin of attraction of any previously detected local
minimum (see Algorithm 1, line 7). If that is not the case,
a local search is performed from the best individual and the
population is locally restarted within a hypercube with edge
equal to 2δlocal around the detected local minimum; other-
wise, no local search is performed and the population is
restarted globally in the whole search space (Algorithm 1,
line 24). Prior to the implementation of the restart mecha-
nisms, MP-AIDEA updates the estimation of the size of the
basin of attraction of eachminimum, the archive A (seeAlgo-
rithm 1, lines 5 to 22) and the distribution over the possible
values of 2δlocal (see Algorithm 1, line 23). In the following
the identification of the basin of attraction, the estimation of
δlocal and the two restart mechanisms are described in more
details.

5.3.1 Identification of the basin of attraction

In order to mitigate the possibility of running multiple local
searches that converge to already discovered local minima,
MP-AIDEAestimates for each localminimum in A the radius
of the basin of attraction of that local minimum. The radius of
the basin of attraction is here defined as the distance dbasin,LM
from a given local minimum xLM such that if the best individ-
ual in population m, xbest,m , is at a distance from xLM lower
than dbasin,LM a local search starting from xbest,m would con-
verge to xLM.

The radius dbasin,LM is estimated with the simple proce-
dure in Algorithm 1, lines 7 to 19. Once the evolution of
all populations has stopped, the distance ‖xbest,m − xLM‖ of
the best individual, in each population, with respect to all
the minima in A is calculated and compared to the dbasin,LM
associated to each local minimum in A; initially all dbasin,LM
are set to 0. If the distance ‖xbest,m − xLM‖ is grater than
dbasin,LM a local search is started from xbest,m . If the resulting
local minimum x(sm )

min,m already belongs to A, the counter iLM
is updated and the new estimate of the basin of attraction of
xLM becomes dbasin,LM = min[dbasin,LM , ‖xbest,m − xLM‖].
x(sm )
min,m belongs to A if ∃ LM : ‖x(sm )

min,m − xLM‖ ≤ εΔ. ε

is set to 10−3. If iLM exceeds a given maximum value and
‖xbest,m − xLM‖ < dbasin,LM ∀ LM no local search and no
local restart are performed. The counter iLM is initialised to 1
for every new local minimum and keeps track of the number
of times a local minimum is discovered.

5.3.2 Adaptation of ılocal

When a populationm is locally restarted, individuals are gen-
erated by taking a random sample, with Latin Hypercube,
within a hypercube with edge equal to 2δlocal,m . The dimen-
sion δlocal,m is drawn from a probability distribution that
is progressively updated at every restart. We use a kernel
approach with kernels centred in the elements of a vector
B (see Algorithm 6) containing a range of possible values
of δlocal,m . The vector B is initialised, with the procedure
presented in Algorithm 5, when all populations performed
a local search for the first time and at every global restart.
During initialisation the distance between all the local min-
ima in the archive A is computed (Algorithm 5, line 1) and
B is initialised with values spanning the interval between the
minimum and the mean distance among minima (Algorithm
5, lines 2–3). The mean values instead of the max is used
to limit the size of the restart bubble and speed up conver-
gence under the assumption that a local restart needs to lead
to the local exploration of the search space. In the experi-
mental tests, it will be shown that this working assumption
is generally verified and δlocal,m tends to converge to small
values. Then, a second vector ddb, with the same number of
components of B, is initialised to zero (Algorithm 5, line 4).

During the update phase of δlocal,m , MP-AIDEA uses the
index sm to keep track of the number of times population
m performed a local search and calculates the difference
pm between two subsequent local minima (see Algorithm 6,
line 5). The value pm is then compared to the elements in
ddb and when ddb,q < pm then δlocal,m replaces Bq , and pm
replacesddb,q (Algorithm6, lines 7-10). In otherwords, if the
δlocal,m used to restart population m led to a local minimum
x(sm )
min,m different from x(sm−1)

min,m , the local minimum previously
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identified by the samepopulation, the probability of sampling
δlocal,m is increased.

Algorithm 5 Initialise B
1: Compute dminM I N and dminME AN
2: Create 1-dimensional regular gridwith (nD+1) points in the interval

[dminM I N , dminME AN ]
3: Initialise B with points of the grid
4: Initialise vector ddb associated to B with element ddb,q = 0 for all

q ∈ [1, . . . , (nD + 1)]

Algorithm 6 Update the distribution of δlocal
1: if All populations did local search for the 1st time then
2: Create vector B using Algorithm 5
3: end if
4: for m ∈ [1, . . . , n pop] do
5: Compute pm = ||x(sm )

min,m − x(sm−1)
min,m ||

6: for q ∈ [1, . . . , nD + 1] do
7: if ddb,q < pm then
8: Bq ← δlocal,m
9: ddb,q ← pm
10: end if
11: end for
12: end for
13: Row sort B according to ddb values

Algorithm 7 MP-AIDEA: local and global restart
1: for m ∈ [1, . . . , n pop] do
2: if LRm = 1 then
3: Sample δlocal,m from the kernel distribution over the values in

B
4: L.R.: Initialise population Pm in a hypercube centred in

x(sm )
min,mwith edge 2δlocal,m for all m ∈ {1, . . . , n pop}

5: else
6: Cluster local minima in A and compute cluster baricentres xc
7: G.R.: Initialise population Pm = {xm,i : ||xm,i − xc|| >√

nDδglobal ,∀i ∈ {1, . . . , Npop}}
8: Initialise vector B using Algorithm 5
9: end if
10: end for

5.3.3 Local and global restart

After the identification of the basin of attraction and the
update of the value of δlocal, populations undergo a restart
process in which a new population is generated either by
sampling a neighbourhood of a local minimum (local restart)
or by sampling the whole search space (global restart). The
two restart procedures are described in Algorithm 7.

The local restart procedure takes the latest identified local
minimum x(sm )

min,m of population m and restart the population

with Latin Hypercube sampling in a box centred in x(sm )
min,m

with edge length 2δlocal,m .
The global restart procedure identifies clusters of local

minima with a Fuzzy C-Mean algorithm (Bezdek 1981),
computes the centre of each cluster and initialises population
m so that each individual is at distance at least

√
nDδglobal

from each of the centres of the clusters (Algorithm 7, lines 6
and 7).

At each local and global restart, the CRF matrix is re-
initialised while the vector B is initialised only after every
global restart. Themotivation for re-initialisingCRF at every
restart is twofold: on the one hand different values of CR and
F might be optimal in different parts of the search space,
and on the other hand convergence to the optimal value of
CR and F is not always guaranteed. In search spaces with
uniform and homogeneous structures, restarting CRF and B
might lead to an overhead on the computational cost; there-
fore, in future implementations we will test the possibility of
retaining CRF and B across the restart process.

5.4 Computational complexity

The computational complexity of MP-AIDEA is defined by
the three main sets of operations:

– Local search. The local search uses the Matlab fmincon
function which implements an SQP scheme with BFGS
estimation of the Hessianmatrix. Since the matrix is gen-
erally dense, its decomposition is O(n3D).

– Adaptation of CR and F. The adaptation of CR and F
for each individual in each population is the other expen-
sive bit of the algorithmand isO(npopNpopn2D) ( see line 2
in Algorithm 1, line 8 in Algorithm 3 and line 3 in Algo-
rithm 4). As a comparison, the computational complexity
of the standard DE is O (

Npop
)
.

– Restart mechanisms. The cost of the local restart proce-
dure is limited to the generation of npopNpop individuals,
while the global restart has a cost associated also to clus-
tering,which isO = (n2LMnDniter) (Bezdek 1981),where
niter is the number of iterations for the clustering, and one
associated to the verification that the new population is
far from the clusters, which is O(NpopnLM) (see line 7
of Algorithm 7).

Overall when npopNpop < nD the dominant algorithmic cost
is the local search while the adaptation ofCR and F becomes
more expensive for large and numerous populations. Since
in the experimental test cases we will use Npop = nD and
npop = 4 the overall algorithmic complexity remainsO(n3D).
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Table 1 Functions of the CEC
2005 test set Unimodal functions

1 Shifted sphere function

2 Shifted Schwefel’s problem

3 Shifted rotated high conditioned elliptic function

5 Schwefel’s problem with global optimum on bounds

Multimodal functions

6 Shifted Rosenbrock’s function

7 Shifted rotated Griewank’s function without bounds

8 Shifted rotated Ackley’s function with global optimum on bounds

9 Shifted Rastrigin’s function

10 Shifted rotated Rastrigin’s function

11 Shifted rotated Weierstrass function

12 Schwefel’s problem

13 Expanded extended Griewank’s plus Rosenbrock function

14 Shifted rotated expanded Scaffer’s

Hybrid composition functions

15 Hybrid composition function

16 Rotated hybrid composition function

18 Rotated hybrid composition function

19 Rotated hybrid composition function with narrow basin for the global opt.

20 Rotated hybrid composition function with the global optimum on the bounds

21 Rotated hybrid composition function

22 Rotated hybrid composition function with high condition number matrix

Table 2 Functions of the CEC
2011 test set 1 Parameter estimation for frequency-modulated sound waves (nD=6)

2 Lennard-Jones potential problem (nD=30)

3 The bifunctional catalyst blend optimal control problem (nD=1)

5 Tersoff potential for model Si(B) (nD=30)

6 Tersoff potential for model Si(C) (nD=30)

7 Spread spectrum radar polyphase code design (D=20)

10 Circular antenna array design problem (nD=12)

12 Messenger: spacecraft trajectory optimisation problem (nD=26)

13 Cassini 2: spacecraft trajectory optimisation problem (nD=22)

6 Experimental performance analysis

The effectiveness of MP-AIDEA is tested on a benchmark
composed of three test sets. The three test sets are made of
functions taken from three past competitions of the Congress
on Evolutionary Computation (CEC). We took 20 functions
from CEC 2005 (Suganthan et al. 2005), 9 real-world prob-
lems from CEC 2011 (Das and Suganthan 2010) and 22
functions from CEC 2014 (Liang et al. 2013), for a total
of 51 different problems. The list of functions used in each
test set is reported in Tables 1, 2 and 3. They include both aca-
demic test functions and real-world optimisation problems.
Since we are interested in solving problem (1), all functions
selected for this benchmark are continuous and differentiable

We used four different metrics to evaluate MP-AIDEA
against the algorithms that participated in the threeCECcom-
petitions:

– Metric 1: Best, worst, median, mean and standard devia-
tion of the best result over a given number of independent
runs of the algorithm.

– Metric 2: Ranking against the other algorithms using the
same ranking approach proposed in the CEC 2011 com-
petition.

– Metric 3: Wilcoxon test. This is used to compare MP-
AIDEA to the algorithm participating in the CEC 2011
and CEC 2014 for which the source code is available
online.
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Table 3 Functions of the CEC
2014 test set Unimodal functions

1 Rotated high conditioned elliptic function

2 Rotated Bent Cigar function

3 Rotated Discus function

Multimodal functions

4 Shifted and rotated Rosenbrock’s function

5 Shifted and rotated Ackley’s function

7 Shifted and rotated Griewank’s function

8 Shifted Rastrigin’s function

9 Shifted and rotated Rastrigin’s function

10 Shifted Schwefel’s function

11 Shifted and rotated Schwefel’s function

13 Shifted and rotated HappyCat function

14 Shfited and rotated HGBat function

15 Shifted and rotated expanded Griewank’s plus Rosenbrock’s function

16 Shfited and rotated expanded Scaffer’s F6 function

Hybrid function

17 Hybrid function 1

18 Hybrid function 2

20 Hybrid function 4

21 Hybrid function 5

Composition function

23 Composition function 1

24 Composition function 2

25 Composition function 3

28 Composition function 6

Table 4 Settings for the CEC 2005, CEC 2011 and CEC 2014 test
functions

CEC 2005 CEC 2011 CEC 2014

Problems settings

nD 10, 30, 50 – 10, 30, 50, 100

nfeval,max 10000 nD 150000 10000 nD

nruns 25 25 51

MP-AIDEA settings

npop 4 4 4

Npop nD nD nD

ρ̄ 0.2 0.2 0.2

δglobal 0.1 0.1 0.1

– Metric 4: Success rate. This is used to compare MP-
AIDEA to the algorithm participating in the CEC 2011
and CEC 2014 for which the source code is available
online.

The settings of MP-AIDEA were maintained constant for
all problems within a particular test set and were changed
going from one test set to another. This is in line with the

way all the other algorithms competed. Table 4 summarises
the parameters and settings used for the CEC 2005, CEC
2011 and CEC 2014 test functions. More details about the
chosen parameters will be given in Sect. 6.1.

The ranking of the algorithms participating in every com-
petition was adjusted to account only for their performance
on the selected subset of differentiable functions.

It will be shown that all metrics lead to similar conclu-
sions: MP-AIDEA ranks among the first four algorithms, if
not first, in all three test sets and for all dimensions. We will
also show that MP-AIDEA can detect previously undiscov-
ered minima on some particularly difficult functions.

The current implementation of MP-AIDEA can be found
open source at https://github.com/strath-ace/smart-o2c
together with the benchmark of test cases.

6.1 Test sets

This section briefly describes each test set, the settings of
MP-AIDEA and metric 1 for all test sets.
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Table 5 Objective functions
error of the CEC 2005 test set in
dimension 10D and 30D

Best Worst Median Mean Std

10D

1 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

2 0.00e+00 1.14e−13 0.00e+00 0.00e+00 4.34e−14

3 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

5 5.60e−06 1.70e−04 6.17e−05 6.59e−05 4.36e−05

6 3.04e−10 2.33e−09 1.80e−09 1.60e−09 6.06e−10

7 4.83e−13 1.48e−02 1.02e−10 1.97e−03 4.21e−03

8 2.00e+01 2.00e+01 2.00e+01 2.00e+01 6.65e−10

9 0.00e+00 9.95e−01 0.00e+00 3.98e−02 1.99e−01

10 0.00e+00 3.98e+00 1.99e+00 1.79e+00 1.04e+00

11 3.29e+00 5.88e+00 5.31e+00 4.71e+00 6.18e−01

12 0.00e+00 1.19e−12 5.68e−14 1.71e−13 2.79e−13

13 9.87e−03 5.31e−01 2.66e−01 2.40e−01 1.58e−01

14 3.32e−01 3.52e+00 2.13e+00 2.11e+00 6.70e−01

15 0.00e+00 4.00e+02 2.84e−14 2.98e+01 8.14e+01

16 0.00e+00 1.15e+02 1.00e+02 9.53e+01 2.25e+01

18 3.00e+02 9.00e+02 8.00e+02 7.18e+02 2.43e+02

19 3.00e+02 9.06e+02 8.00e+02 7.45e+02 2.03e+02

20 3.00e+02 9.38e+02 8.00e+02 6.83e+02 2.46e+02

21 3.00e+02 8.00e+02 3.00e+02 4.20e+02 1.50e+02

22 3.00e+02 8.01e+02 7.54e+02 6.53e+02 2.01e+02

30D

1 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

2 0.00e+00 2.27e−13 1.14e−13 5.68e−14 6.46e−14

3 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

5 1.81e−01 1.52e+00 4.58e−01 5.13e−01 2.97e−01

6 5.81e−10 4.07e+00 8.25e−03 3.45e−01 8.95e−01

7 4.26e−13 1.79e−11 2.64e−12 4.58e−12 4.86e−12

8 2.00e+01 2.00e+01 2.00e+01 2.00e+01 9.26e−13

9 0.00e+00 5.97e+00 2.21e+00 2.40e+00 1.49e+00

10 1.99e+01 4.78e+01 3.18e+01 3.05e+01 7.16e+00

11 1.57e+01 2.69e+01 2.09e+01 2.12e+01 2.99e+00

12 8.24e−12 5.89e+02 1.05e+01 1.22e+02 2.06e+02

13 8.88e−01 2.66e+00 1.64e+00 1.60e+00 4.44e−01

14 1.10e+01 1.26e+01 1.17e+01 1.17e+01 3.77e−01

15 2.27e+01 4.00e+02 4.00e+02 3.15e+02 1.37e+02

16 4.16e+01 6.85e+01 5.68e+01 5.69e+01 6.99e+00

18 8.00e+02 9.11e+02 9.09e+02 8.87e+02 4.43e+01

19 8.00e+02 9.12e+02 9.06e+02 8.73e+02 5.14e+01

20 8.00e+02 9.13e+02 9.07e+02 8.78e+02 4.99e+01

21 5.00e+02 5.00e+02 5.00e+02 5.00e+02 4.91e−11

22 8.78e+02 9.22e+02 9.10e+02 9.06e+02 1.04e+01

6.1.1 CEC 2005 test set

Following the rules of the CEC 2005 competition, MP-
AIDEA was applied to the solution of the problems in the
CEC 2005 test set in dimension nD = 10, 30 and 50,

with a maximum number of function evaluation equal to
nfeval,max = 10000nD. The experiments were repeated for a
total of nruns = 25 independent runs for each function (Sug-
anthan et al. 2005). Functions 4, 17, 24 and 25 of the CEC
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Table 6 Objective functions error of theCEC2005 test set in dimension
50D

Best Worst Median Mean Std

1 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

2 5.68e−14 5.68e−13 1.14e−13 5.68e−14 1.45e−13

3 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

5 8.28e−01 1.97e+01 2.52e+00 4.25e+00 4.82e+00

6 3.80e−10 3.11e+01 2.58e+01 2.27e+01 8.82e+00

7 6.11e−12 2.25e−07 8.05e−11 1.00e−08 4.50e−08

8 2.00e+01 2.00e+01 2.00e+01 2.00e+01 2.00e−12

9 4.97e+00 1.29e+01 7.96e+00 8.41e+00 2.14e+00

10 5.47e+01 1.01e+02 7.66e+01 7.61e+01 1.17e+01

11 3.62e+01 5.94e+01 4.57e+01 4.64e+01 6.50e+00

12 4.80e+01 9.37e+03 8.07e+02 1.24e+03 1.84e+03

13 2.87e+00 5.00e+00 3.96e+00 3.89e+00 6.35e−01

14 2.04e+01 2.19e+01 2.12e+01 2.12e+01 4.13e−01

15 2.57e+01 4.00e+02 2.88e+02 3.08e+02 1.00e+02

16 5.10e+01 7.65e+01 6.08e+01 6.25e+01 6.96e+00

18 3.04e+02 9.34e+02 9.24e+02 8.65e+02 1.30e+02

19 8.00e+02 9.34e+02 9.25e+02 8.92e+02 5.85e+01

20 3.00e+02 9.65e+02 9.13e+02 8.52e+02 1.32e+02

21 5.00e+02 5.00e+02 5.00e+02 5.00e+02 7.65e−08

22 9.20e+02 9.70e+02 9.48e+02 9.50e+02 1.31e+01

2005 competition were not included in the test set because
non-differentiable.

The number of populations in MP-AIDEA was set to
npop = 4 and the number of individuals in each popula-
tion was set to Npop = nD. The number of populations to

be deployed on a particular problem depends on the type
and complexity of that problem, and the available number
of function evaluations. We tested MP-AIDEA with dif-
ferent numbers of populations from 1 to 4 (results using
MP-AIDEA with one population are presented in Sect. 6.2).
Results showed thatMP-AIDEAwith4populations performs
consistently well on all benchmarks, and, thus, we decided
to present our findings for npop = 4. The contraction limit
was set to ρ̄ = 0.2 and the global restart distance was set to
δglobal = 0.1 (Table 4). In line with the metrics presented at
the CEC 2005 competition, Tables 5 and 6 reports the differ-
ence, in the objective value, between the result obtained with
MP-AIDEA and the known global minimum.

Table 7 reports the best objective function error values
obtained by all the algorithms participating in the CEC 2005
competition and MP-AIDEA for functions 13 and 16 and
nD = 10. According to the CEC 2005 specifications, the
accuracy level for the detection of the global minimum is
10−2 for these functions. MP-AIDEA is able to identify the
global minimum of both functions 13 and 16. Previously
onlyEvLib (Becker 2005) succeeded in identifying the global
minimum of function 13 and no other algorithm managed to
find the global minimum of function 16.

6.1.2 CEC 2011 test set

Following the rules of the CEC 2011 competition (Das
and Suganthan 2010), MP-AIDEA was run for nfeval,max =
150000 function evaluations on the CEC2011 test set. The
experiments were repeated for nruns = 25 independent runs.
Test functions with equality and inequality constraints were
not included in the tests. The number of populations npop

Table 7 CEC 2005 best
objective function error values
for functions 13 and 16,
nD = 10

Algorithm Function 13 Function 16

BLX-GL50 (García-Martínez and Lozano 2005) 3.70e−01 7.20e+01

BLX-MA (Molina et al. 2005) 3.80e−01 9.00e+01

CoEVO (Pošik 2005) 4.70e−01 1.20e+02

DE (Ronkkonen et al. 2005) 4.60e−01 1.50e+02

DE (Bui et al. 2005) 2.70e−01 1.00e+02

DMS-L-PSO (Liang and Suganthan 2005) 2.50e−01 5.20e+01

EDA (Yuan and Gallagher 2005) 1.60e+00 1.30e+02

ES (Costa 2005) 7.90e−01 9.70e+01

EvLiv (Becker 2005) 9.90e−03 1.20e+02

flexGA (Alonso et al. 2005) 4.20e−02 1.10e+02

G-CMA-ES (Auger and Hansen 2005b) 4.10e−01 7.90e+01

K-PCX (Sinha et al. 2005) 3.30e−01 8.80e+01

L-CMA-ES (Auger and Hansen 2005a) 1.90e−01 6.10e+01

L-SaDE (Qin and Suganthan 2005) 1.20e−01 8.60e+01

SPC-PNX (Ballester et al. 2005) 3.50e−01 9.10e+01

MP-AIDEA 9.87e−03 0.00e+00
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Table 8 Objective functions of
the CEC 2011 test set

Best Worst Median Mean Std

1 9.30e−19 1.09e+01 6.67e−15 8.44e−01 2.92e+00

2 −2.84e+01 −2.71e+01 −2.76e+01 −2.79e+01 4.74e−01

3 1.15e−05 1.15e−05 1.15e−05 1.15e−05 5.83e−17

5 −3.68e+01 −3.45e+01 −3.60e+01 −3.61e+01 7.40e−01

6 −2.92e+01 −2.30e+01 −2.74e+01 −2.72e+01 2.32e+00

7 5.00e−01 7.13e−01 5.00e−01 5.31e−01 5.30e−02

10 −2.18e+01 −2.14e+01 −2.16e+01 −2.16e+01 1.42e−01

12 6.88e+00 1.51e+01 1.22e+01 1.15e+01 2.53e+00

13 8.71e+00 1.98e+01 1.43e+01 1.34e+01 3.10e+00

was set to 4 and the number of individuals in each population
was set to Npop = 30 regardless of the dimensionality of the
problem. The contraction limit and the global restart distance
were set, respectively, to ρ̄ = 0.2 and δglobal = 0.1 (Table
4). Table 8 reports the best, worst, median, mean objective
function found by MP-AIDEA and the associated standard
deviation.

6.1.3 CEC 2014 test set

In line with the rules of the CEC 2014 competition (Liang
et al. 2013), MP-AIDEA was applied to the solution of the
functions in the CEC 2014 test set in dimension nD = 10, 30,
50 and 100, with maximum number of function evaluations
nfeval,max = 10000nD. The experiments were repeated for
nruns = 51 independent runs. Non-differentiable functions 6,
12, 19, 22, 26, 27, 29 and 30 were not included in the test set
(see Table 3). The number of populations was set to npop = 4
and the number of individuals in each population was set
to Npop = nD. The contraction limit and the global restart
distance were set, respectively, to ρ̄ = 0.2 and δglobal = 0.1
(Table 4).

Tables 9 and 10 report the difference between the objective
value found byMP-AIDEA and the known global minimum.
In agreement to the guidelines of the competition error values
smaller than 10−8 are reported as zero, (Liang et al. 2013).
Table 11 reports the best objective function values obtained
by all the algorithms participating in the competition and
MP-AIDEA for functions 9, 10, 11 and 15 in 10 dimensions.
MP-AIDEA finds the global minimum of function 11, unlike
all the other competing algorithms, and gives good results for
the other functions.

6.2 Ranking

In this section,MP-AIDEA is ranked against a group of algo-
rithms participating in each CEC competition. The rankings
include those algorithms that reported their results in a paper
and MP-AIDEA with two different settings:

– npop = 4 and Npop = nD. This settings will be indicated
as “MP-AIDEA” in the following and corresponds to the
settings that was used to generate the results in Sect. 6.1.

– npop = 1, Npop = 4nD; MP-AIDEA adapts CR and F
but uses fixed values for δlocal and nLR. In particular,
nLR = 10 and δlocal = 0.1, unless otherwise specified.
This settings will be indicated as “MP-AIDEA, npop =
1” in the following.

The ranking method follows the rules of the CEC 2011 com-
petition, (Suganthan 2011). All algorithms are ranked on the
basis of the best and mean values of the objective function
obtained over a certain number of runs. The following pro-
cedure is used to obtain the ranking:

– for each function, algorithms are ranked according to the
best objective value;

– for each function, algorithms are ranked according to the
mean objective value;

– the ranking for the best and mean objective values of a
particular algorithm are added up over all the problems
to get the absolute ranking.

In the following, the rankings obtained for the CEC 2005,
CEC 2011 and CEC 2014 test sets are presented.

6.2.1 CEC 2005 test set

The rankings obtained for nD = 10, nD = 30 and nD = 50
are reported in Table 12. Only the competing algorithms
that reported in their paper also the results obtained for the
hybrid functions of the CEC 2005 competition (Table 1) are
considered. Results show that, for nD = 10 and nD = 30,
MP-AIDEA with adaptation of δlocal and nLR is ranked first,
while for nD = 50 results are better when using MP-AIDEA
with non-adapted δlocal = 0.1 and nLR = 10. In any case,
both settings outperform the winning algorithm of the com-
petition CEC 2005.
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Table 9 Objective functions
error of the CEC 2014 test set in
dimension 10D and 30D

Best Worst Median Mean Std

10D

1 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

2 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

3 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

4 0.00e+00 4.34e+00 0.00e+00 8.50e−02 6.07e−01

5 2.85e−06 2.00e+01 1.31e−05 1.84e+00 5.38e+00

7 0.00e+00 1.23e−02 0.00e+00 2.51e−03 4.02e−03

8 0.00e+00 9.95e−01 0.00e+00 1.37e−01 3.46e−01

9 0.00e+00 3.98e+00 1.99e+00 1.87e+00 9.26e−01

10 0.00e+00 1.19e+02 1.87e−01 9.33e+00 2.79e+01

11 0.00e+00 2.95e+02 3.67e+01 8.82e+01 8.69e+01

13 3.83e−02 1.09e−01 6.52e−02 6.98e−02 1.69e−02

14 1.06e−02 6.40e−02 2.23e−02 2.48e−02 1.03e−02

15 1.97e−02 4.54e−01 3.25e−01 3.10e−01 9.14e−02

16 2.07e−01 2.53e+00 1.42e+00 1.38e+00 5.15e−01

17 0.00e+00 1.43e+02 6.18e+00 2.85e+01 4.53e+01

18 4.90e−03 3.05e+00 6.56e−02 4.29e−01 6.15e−01

20 5.85e−03 2.89e+00 2.23e−01 4.67e−01 5.69e−01

21 1.44e−02 5.87e+01 4.97e−01 4.09e+00 1.39e+01

23 3.29e+02 3.29e+02 3.29e+02 3.29e+02 3.05e−12

24 1.00e+02 1.11e+02 1.06e+02 1.05e+02 3.61e+00

25 1.00e+02 1.19e+02 1.00e+02 1.03e+02 5.07e+00

28 1.01e+02 4.81e+02 3.57e+02 3.47e+02 6.58e+01

30D

1 0.00e+00 0.00e+00 0.00e+00 0.00e+00 6.88e−14

2 0.00e+00 0.00e+00 0.00e+00 0.00e+00 4.16e−13

3 0.00e+00 0.00e+00 0.00e+00 0.00e+00 2.13e−14

4 0.00e+00 0.00e+00 0.00e+00 0.00e+00 3.64e−13

5 2.00e+01 2.00e+01 2.00e+01 2.00e+01 3.19e−04

7 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.59e−13

8 0.00e+00 3.98e+00 1.99e+00 2.24e+00 1.14e+00

9 1.09e+01 3.28e+01 2.19e+01 2.26e+01 5.54e+00

10 3.69e+00 1.25e+02 1.07e+01 1.83e+01 3.09e+01

11 6.94e+02 2.34e+03 1.55e+03 1.56e+03 3.70e+02

13 1.25e−01 2.56e−01 1.91e−01 1.91e−01 3.23e−02

14 1.06e−01 2.19e−01 1.47e−01 1.54e−01 2.23e−02

15 1.36e+00 2.98e+00 2.00e+00 2.05e+00 4.06e−01

16 8.40e+00 1.12e+01 1.00e+01 1.00e+01 6.53e−01

17 1.56e+02 9.22e+02 5.21e+02 5.13e+02 1.79e+02

18 1.23e+01 4.70e+01 2.63e+01 2.73e+01 9.35e+00

20 4.29e+00 2.85e+01 1.56e+01 1.57e+01 5.78e+00

21 7.57e+00 5.36e+02 2.38e+02 2.31e+02 9.89e+01

23 3.15e+02 3.15e+02 3.15e+02 3.15e+02 1.35e−10

24 2.00e+02 2.26e+02 2.22e+02 2.19e+02 8.81e+00

25 2.00e+02 2.04e+02 2.03e+02 2.03e+02 6.52e−01

28 6.31e+02 8.56e+02 7.93e+02 7.74e+02 6.20e+01
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Table 10 Objective functions
error of the CEC 2005 test set in
dimension 50D and 100D

Best Worst Median Mean Std

50D

1 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

2 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

3 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

4 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

5 2.00e+01 2.00e+01 2.00e+01 2.00e+01 2.40e−05

7 0.00e+00 0.00e+00 0.00e+00 0.00e+00 6.58e−13

8 2.98e+00 1.09e+01 7.96e+00 7.67e+00 1.84e+00

9 3.68e+01 8.76e+01 5.77e+01 5.83e+01 1.06e+01

10 6.58e+00 2.49e+02 1.75e+01 5.22e+01 6.41e+01

11 2.21e+03 4.86e+03 3.96e+03 3.85e+03 5.21e+02

13 2.07e−01 3.83e−01 3.01e−01 3.08e−01 4.51e−02

14 1.68e−01 2.68e−01 2.32e−01 2.32e−01 2.48e−02

15 3.38e+00 6.31e+00 4.94e+00 4.93e+00 6.68e−01

16 1.78e+01 2.07e+01 1.91e+01 1.91e+01 6.20e−01

17 5.72e+02 1.70e+03 1.07e+03 1.05e+03 2.65e+02

18 4.12e+01 1.40e+02 7.31e+01 7.04e+01 2.07e+01

20 5.10e+01 1.88e+02 9.97e+01 1.02e+02 2.84e+01

21 3.71e+02 1.07e+03 7.79e+02 7.63e+02 1.53e+02

23 3.44e+02 3.44e+02 3.44e+02 3.44e+02 9.45e−08

24 2.52e+02 2.71e+02 2.54e+02 2.56e+02 3.89e+00

25 2.00e+02 2.10e+02 2.07e+02 2.07e+02 1.51e+00

28 1.02e+03 1.25e+03 1.16e+03 1.15e+03 5.45e+01

100D

1 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

2 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

3 0.00e+00 0.00e+00 0.00e+00 0.00e+00 3.75e−12

4 0.00e+00 3.99e+00 9.32e−12 3.13e−01 1.08e+00

5 2.00e+01 2.00e+01 2.00e+01 2.00e+01 6.35e−06

7 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

8 1.59e+01 4.28e+01 3.08e+01 2.98e+01 5.26e+00

9 1.44e+02 2.10e+02 1.78e+02 1.76e+02 1.83e+01

10 1.29e+02 1.08e+03 4.92e+02 5.24e+02 2.34e+02

11 8.36e+03 1.13e+04 9.92e+03 9.91e+03 6.78e+02

13 3.12e−01 5.14e−01 4.44e−01 4.37e−01 4.11e−02

14 2.58e−01 3.56e−01 3.01e−01 3.04e−01 2.19e−02

15 1.02e+01 2.27e+01 1.63e+01 1.63e+01 2.41e+00

16 3.92e+01 4.35e+01 4.17e+01 4.17e+01 7.96e−01

17 2.09e+03 3.69e+03 2.73e+03 2.78e+03 4.29e+02

18 1.57e+02 2.63e+02 2.09e+02 2.10e+02 3.09e+01

20 2.67e+02 5.98e+02 4.25e+02 4.21e+02 8.30e+01

21 8.88e+02 2.15e+03 1.51e+03 1.53e+03 3.00e+02

23 3.48e+02 3.48e+02 3.48e+02 3.48e+02 1.39e−03

24 3.63e+02 3.80e+02 3.69e+02 3.70e+02 3.25e+00

25 2.00e+02 2.54e+02 2.00e+02 2.14e+02 1.99e+01

28 1.70e+03 2.46e+03 2.23e+03 2.15e+03 2.11e+02
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Table 11 CEC 2014 best
objective function error values
for functions 9, 10, 11 and 15,
nD = 10

Algorithm Func. 9 Func. 10 Func. 11 Func. 15

b3e3pbest (Bujok et al. 2014) 2.60e+00 0.00e+00 9.50e+01 5.70e−01

CMLSP (Chen et al. 2014) 0.00e+00 2.50e−01 3.60e+00 4.50e−01

DE-b6e6rl (Polakova et al. 2014) 2.50e+00 0.00e+00 3.60e+01 4.90e−01

FCDE (Li et al. 2014) 8.00e+00 3.10e−01 1.40e+02 6.50e−01

FERDE (Qu et al. 2014) 3.00e+00 0.00e+00 3.80e−01 3.50e−01

FWA-DM (Yu et al. 2014) 2.00e+00 9.10e−13 4.00e+01 3.20e−01

GaAPADE (Mallipeddi et al. 2014) 1.90e+00 2.40e−02 2.40e+00 3.80e−01

L-SHADE (Tanabe and Fukunaga 2014) 2.20e−03 0.00e+00 3.90e−01 2.10e−01

MVMO (Erlich et al. 2014) 9.90e−01 6.20e−02 3.40e+00 2.10e−01

NRGA (Yashesh et al. 2014) 9.90e−01 3.70e+00 1.90e+01 3.70e−01

OptBees (2014 b) 2.00e+00 3.50e+00 1.30e+02 6.30e−01

POBL-ADE (Hu et al. 2014) 1.00e+00 2.20e+01 3.60e+00 1.70e−01

rmalschma (Molina et al. 2014) 9.90e−01 6.20e−02 1.90e−01 3.10e−01

RSDE (Xu et al. 2014) 2.00e+00 3.50e+00 1.90e+01 3.60e−01

SOO (Preux et al. 2014) 9.00e+00 1.30e+02 3.50e+02 4.40e−01

SOO-BOBYQA (Preux et al. 2014) 9.00e+00 1.30e+02 3.50e+02 4.20e−01

UMOEAs (Elsayed et al. 2014) 9.90e−01 6.20e−02 3.50e+00 3.20e−01

MP-AIDEA 0.00e+00 0.00e+00 0.00e+00 1.97e−02

Table 12 CEC 2005 algorithms ranking

Rank nD = 10 nD = 30 nD = 50

1 MP-AIDEA MP-AIDEA MP-AIDEA, npop = 1

2 MP-AIDEA, npop = 1 MP-AIDEA, npop = 1 MP-AIDEA

3 G-CMA-ES (Auger and Hansen 2005b) G-CMA-ES G-CMA-ES

4 L-SaDE (Qin and Suganthan 2005) L-CMA-ES L-CMA-ES

5 DMS-L-PSO (Liang and Suganthan 2005) K-PCX flexGA

6 L-CMA-ES (Auger and Hansen 2005a) BLX-GL50

7 BLX-GL50 (García-Martínez and Lozano 2005) SPC-PNX

8 DE (Ronkkonen et al. 2005) DE (Ronkonnen)

9 SPC-PNX (Ballester et al. 2005) DE (Bui)

10 EvLiv (Becker 2005) flexGA

11 EDA (Yuan and Gallagher 2005) CoEVO

12 K-PCX (Sinha et al. 2005) EDA

13 BLX-MA (Molina et al. 2005)

14 DE (Bui et al. 2005)

15 CoEVO (Pošik 2005)

16 flexGA (Alonso et al. 2005)

17 ES (Costa 2005)

6.2.2 CEC 2011 test set

The results obtained on the CEC 2011 test set are reported in
Table 13. MP-AIDEA ranks first if problem 13 (the Cassini
2 Spacecraft Trajectory Optimisation Problem) is excluded
from the test set and second if it is included.

The reason can be found in Fig. 2. Figure 2 shows the con-
vergence profile of the best solutions found by MP-AIDEA

and GA-MPC, the best algorithm of the competition, on
function 13 for an increasing number of function evalua-
tions (greater than the limit prescribed by the CEC 2011
competition). The results for GA-MPC are obtained using
the code available online (http://www3.ntu.edu.sg/home/
epnsugan/index_files/CEC11-RWP/CEC11-RWP.htm).

On this test problem, GA-MPC converges very rapidly
to a local minimum but then stagnates. On the contrary,
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Table 13 CEC 2011 algorithms
ranking

Rank With function 13 Without function 13

1 GA-MPC (Elsayed et al. 2011b) MP-AIDEA

3 MP-AIDEA GA-MPC

4 SAMODE (Elsayed et al. 2011a) EA-DE-MA

5 EA-DE-MA (Singh and Ray 2011) SAMODE

6 WI-DE (Haider et al. 2011) WI-DE

7 Adap. DE 171 (Asafuddoula et al. 2011) MP-AIDEA, npop = 1

8 MP-AIDEA, npop = 1 ED-DE

10 DE-Λ (Reynoso-Meza et al. 2011) DE-Λ

11 ED-DE (Wang et al. 2011) Adapt. DE 171

12 DE-RHC (LaTorre et al. 2011) DE-RHC

13 RGA (Saha and Ray 2011) RGA

14 Mod-DE-LS (Mandal et al. 2011) Mod-DE-LS

15 mSBX-GA (Bandaru 2011) mSBX-GA

16 ENSML-DE (Mallipeddi and Suganthan 2011) CDASA

17 CDASA (Korošec and Šilc 2011) ENSML-DE
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Fig. 2 Best values of MP-AIDEA and GA-MPC for Function 13,
CEC2011

MP-AIDEA has a slower convergence for the first 200,000
function evaluations but then progressively finds better
and better minima as the number of function evaluations
increases. This demonstrates that in a realistic scenario in
which function evaluations are not arbitrarily limited, MP-
AIDEA would provide better results than the algorithm that
won the competition.

Results in Table 13 shows that MP-AIDEA with adapta-
tion of δlocal and nLR performs better than MP-AIDEA with
fixed values of δlocal and nLR. The adaptation history of δlocal
is shown in Fig. 3 for each of the four populations on test
functions 12 and 13 and for 600,000 function evaluations.

6.2.3 CEC 2014 test set

The ranking results for the CEC 2014 test set are reported in
Table 14. MP-AIDEA with one population is tested in this
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Fig. 3 δlocal for the four populations of MP-AIDEA for functions 12
(top) and 13 (bottom), CEC 2011
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Table 14 CEC 2014 algorithms
ranking

Rank nD = 10 nD = 30

1 UMOEAs (Elsayed et al. 2014) L-SHADE

2 MP-AIDEA UMOEAs

3 L-SHADE (Tanabe and Fukunaga 2014) GaPADE

4 MVMO (Erlich et al. 2014) MP-AIDEA npop = 1, δlocal = 0.1

5 MP-AIDEA, npop = 1, δlocal = 0.1 MP-AIDEA

6 DE-b6e6rl (Polakova et al. 2014) CMLSP

7 rmalschma (Molina et al. 2014) MP-AIDEA npop = 1, δlocal = 0.3

8 MP-AIDEA, npop = 1, δlocal = 0.3 rmalshcma

9 GaAPADE (Mallipeddi et al. 2014) MVMO

10 FERDE (Qu et al. 2014) DE-b6e6rl

11 CMLSP (Chen et al. 2014) b3e3pbest

12 b3e3pbest (Bujok et al. 2014) FERDE

13 RSDE (Xu et al. 2014) RSDE

14 FWA-DE (Yu et al. 2014) FWA-DE

15 POBL-ADE (Hu et al. 2014) POBL-ADE

16 OptBees (2014 b) OptBees

17 SOO-BOBYQA (Preux et al. 2014) SOO-BOBYQA

18 FCDE (Li et al. 2014) NRGA

19 NRGA (Yashesh et al. 2014) FCDE

20 SOO (Preux et al. 2014) SOO

Rank nD = 50 nD = 100

1 MP-AIDEA npop = 1, δlocal = 0.1 MP-AIDEA npop = 1, δlocal = 0.1

2 UMOEAs UMOEAs

3 MVMO L-SHADE

4 MP-AIDEA MP-AIDEA

5 L-SHADE rmalshcma

6 MP-AIDEA npop = 1, δlocal = 0.3 MP-AIDEA npop = 1, δlocal = 0.3

7 rmalshcma POBL-ADE

8 b3e3pbest b3e3pbest

9 FERDE OptBees

10 DE-b6e6rl DE-b6e6rl

11 RSDE RSDE

12 POBL-ADE FWA-DE

13 OptBees

14 FWA-DE

15 SOO

case with δlocal = 0.1 and δlocal = 0.3. For nD = 10 the
results of MP-AIDEA with adaptation of δlocal and nLR are
better than those ofMP-AIDEAwith fixed values of δlocal and
nLR, for both δlocal = 0.1 and δlocal = 0.3. In the other cases
MP-AIDEA with fixed values of δlocal and nLR outperforms
MP-AIDEA with adaptation of δlocal and nLR when δlocal =
0.1 but not when δlocal = 0.3. These results show the strong
influence of this parameter on the results obtained by MP-
AIDEA. The adaptation history of δlocal for test functions 9,

17 and 25 at nD = 30 and 300,000 functions evaluations is
shown in Fig. 4.

These figures show how the adaptation of δlocal is effective
when a sufficient number of adaptation steps can be per-
formed within the limit of the maximum number of function
evaluation (300,000 in this case). For function 25, for exam-
ple, the adaptation steps are only 7, while they are 11 for
function 17 and 18 for function 9. In these two cases δlocal
converges to 0.1 and 0.04, respectively.
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Fig. 4 δlocal for the four populations of MP-AIDEA for functions 9
(top), 17 (middle) and 25 (bottom), nD = 30, CEC 2014

The performance of MP-AIDEA for the 30D functions of
the CEC 2014 test set is further investigated to test the depen-
dence of the results upon the two non-adapted parameters, ρ̄

and δglobal. Table 15 shows the raking obtained when varying
ρ̄ and δglobal.

CaseB of Table 15 shows the ranking obtainedwhen using
ρ̄ = 0.3 instead than ρ̄ = 0.2. Comparing the results in
Table 15 with those in Table 14, it is possible to see that MP-
AIDEA performs better using ρ̄ = 0.3 rather than ρ̄ = 0.2,
moving from the fourth to the third position in the ranking.
At the same time, there is no significant dependence upon
the value of δglobal, as shown by Cases C and D in Table 15,
where δglobal is changed from its nominal value of 0.1 to 0.2
and 0.3.

6.3 Wilcoxon test

The Wilcoxon rank sum test is a nonparametric test for two
populations when samples are independent. In this case, the
two populations of samples are, for each problem, the nruns
values of the objective function obtained by MP-AIDEA
and by another algorithms participating in the CEC 2011
and CEC 2014 competitions. No test is performed for the
CEC2005 test set, since for no one of the algorithms partic-
ipating in the CEC 2005 competition the code is available
on-line.

The Wilcoxon test is realised using the Matlab® function
ranksum. ranksum tests the null hypothesis that data from
two entries x and y are samples from continuous distributions
with equal medians. Results from ranksum are presented in
the following as values of p and h. p, ranging from 0 to
1, is the probability of observing a test statistic as or more
extreme than the observed value under the null hypothesis.
h is a logical value, where h = 1 indicates rejection of the
null hypothesis at the 100α % significance level while h = 0
indicates a failure to reject the null hypothesis at the 100α
% significance level, where α is 0.05. When h = 1, the null
hypothesis that distributions x and y have equal medians is
rejected, and additional test are conducted to assess which
one of the two distributions has lower median. In order to do
so, three types of tests are realised using ranksum for the two
distributions x and y:

– Two-sided hypothesis test: the alternative hypothesis
states that x and y have different medians. Two distri-
butions with equal medians will give as results pB = 1
and hB = 0 (failure to reject the null hypothesis that
x and y have equal medians), while two distributions
with different medians will give as results pB = 0 and
hB = 1 (rejection of the null hypothesis that x and y have
equal medians). If the two-sided hypothesis test finds that
the two distributions have equal medians (pB = 1 and
hB = 0), no further test is conducted. Otherwise, the
left-tailed and right-tailed hypothesis test are conducted.

– Left-tailed hypothesis test: the alternative hypothesis
states that the median of x is lower than the median of y.
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Table 15 CEC 2014 algorithms
ranking, 30D, ρ̄ = 0.1 and
ρ̄ = 0.3

Rank Case A Case B Case C Case D
ρ̄ = 0.1 ρ̄ = 0.3 ρ̄ = 0.2 ρ̄ = 0.2
δglobal = 0.1 δglobal = 0.1 δglobal = 0.2 δglobal = 0.3

1 L-SHADE L-SHADE L-SHADE L-SHADE

2 UMOEAs UMOEAs UMOEAs UMOEAs

3 GaAPADE MP-AIDEA GaAPADE GaAPADE

4 MP-AIDEA GaAPADE MP-AIDEA MP-AIDEA

5 CMLSP CMLSP CMLSP CMLSP

6 rmalshcma rmalschma rmalshcma rmalshcma

7 MVMO MVMO MVMO MVMO

8 DE-b6e6rl DE-b6e6rl DE-b6e6rl DE-b6e6rl

9 b3e3pbest b3e3pbest b3e3pbest b3e3pbest

10 FERDE FERDE FERDE FERDE

11 RSDE RSDE RSDE RSDE

12 FWA-DE FWA-DE FWA-DE FWA-DE

13 POBL-ADE POBL-ADE POBL-ADE POBL-ADE

14 OptBees OptBees OptBees OptBees

15 SOO-BOBYQA SOO-BOBYQA SOO-BOBYQA SOO-BOBYQA

16 NRGA NRGA NRGA NRGA

17 FCDE FCDE FCDE FCDE

18 SOO SOO SOO SOO

If x has median greater than the median of y, results will
be pL = 1 and hL = 0 (failure to reject the hypothesis
that x has median greater than y) while if x has median
lower than y results will be pL = 0 and hL = 1 (rejection
of the hypothesis that x has median greater than y).

– Right-tailed hypothesis test: the alternative hypothesis
states that themedian of x is greater than themedian of y.
If x hasmedian lower than themedian of y, results will be
pR = 1 and hR = 0 (failure to reject the hypothesis that
x has median lower than y) while if x has median greater
than y results will be pR = 0 and hR = 1 (rejection of
the hypothesis that x has median lower than y).

If x is the distribution of results of MP-AIDEA and y the dis-
tribution of results given by another algorithm, the possible
results obtained from the ranksum tests are summarised in
Table 16.

Case 1 inTable 16 (hB = 0) represents a situation inwhich
the distribution of results fromMP-AIDEA and a competing
algorithm have equal median (failure to reject the hypothesis
that x has median lower than y). Case 2 (hB=1, hL=0 and
hR=1) represents a situation in which the median of MP-
AIDEA is greater than the median of the other algorithm
(rejection of the null hypothesis that x and y have equal
medians, failure to reject the hypothesis that x has median
greater than y, rejection of the hypothesis that x has median
lower than y). Case 3 (hB=1, hL=1 and hR=0) represents
instead a situation in which the median of MP-AIDEA is

lower than the median of the other algorithm (rejection of the
null hypothesis that x and y have equal medians, rejection
of the hypothesis that x has median greater than y, failure
to reject the hypothesis that x has median lower than y). In
the following, test functions with results corresponding to
cases 1 and 3 are shown in bold (MP-AIDEA has median
equal or lower than the competing algorithm). For case 3
results with pB < 5 · 10−2, pL < 5 · 10−2 and pR > 9.5 ·
10−1 are considered significant. Analogously, the competing
algorithm has median lower than MP-AIDEA if pB < 5 ·
10−2, pL > 9.5 · 10−1 and pR < 5 · 10−2.

6.3.1 CEC 2011 test set

For the CEC 2011 test set, we limited the comparison
against the two top algorithms GA-MPC and DE-Λ,
for which the code is available online (http://www3.ntu.edu.
sg/home/epnsugan/index_files/CEC11-RWP/CEC11-RWP.
htm; http://uk.mathworks.com/matlabcentral/fileexchange/
39217-hybrid-differential-evolution-algorithm-with-adapti
ve-crossover-mechanism/content/DE_TCRparam.m). The
outcome of the Wilcoxon test for the comparison of MP-
AIDEA against GA-MPC, the winning algorithm of the
CEC2011 competition, can be found in Table 17 for all the
functions in the test set in Table 2.

The comparison ofMP-AIDEAwithGA-MPC shows that
the median of MP-AIDEA is lower than the median of GA-
MPC (Case 3) for functions 2, 5, 6 and 7, while it is higher
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Table 16 Wilcoxon test:
possible outcomes

Both Left Right

hB pB hL pL hR pR

Case 1: equal medians 0 1 – – – –

Case 2: median of MP-AIDEA is greater 1 0 0 1 1 0

Case 3: median of MP-AIDEA is lower 1 0 1 0 0 1

Table 17 Outcome of the
Wilcoxon test on the CEC 2011
test set: MP-AIDEA versus
GA-MPC

Func. Both Left Right Result type (Table 16)

h p h p h p

1 1 1.28e−04 0 1.00e+00 1 6.40e−05 Case 2

2 1 1.43e-04 1 7.14e-05 0 1.00e+00 Case 3

3 1 1.10e−05 0 1.00e+00 1 5.49e−06 Case 2

5 1 5.12e−06 1 2.56e−06 0 1.00e+00 Case 3

6 1 4.78e−02 1 2.39e−02 0 9.77e−01 Case 3

7 1 3.01e−09 1 1.50e−09 0 1.00e+00 Case 3

10 0 3.62e−01 0 8.24e−01 0 1.81e−01 Not significant

12 0 4.85e−01 0 2.42e−01 0 7.64e−01 Not significant

13 1 4.61e−03 0 9.98e−01 1 2.31e−03 Case 2

Table 18 Outcome of the
Wilcoxon test on the CEC 2011
test set: MP-AIDEA versus
DE-Λ

Func Both Left Right Result type (Table 16)

h p h p h p

1 0 7.58e−02 0 9.64e−01 1 3.79e−02 Not significant

2 0 4.72e−01 0 2.36e−01 0 7.70e−01 Not significant

3 1 9.73e-11 1 4.86e-11 0 1.00e+00 Case 3

5 1 8.52e-08 1 4.26e-08 0 1.00e+00 Case 3

6 1 1.41e-09 1 7.07e-10 0 1.00e+00 Case 3

7 0 5.05e−02 1 2.52e−02 0 9.76e−01 Not significant

10 1 1.18e-07 1 5.89e-08 0 1.00e+00 Case 3

12 1 2.57e-09 1 1.29e-09 0 1.00e+00 Case 3

13 1 2.04e-03 1 1.02e-03 0 9.99e-01 Case 3

(Case 2) for functions 1, 3 and 13. Results for functions 10
and 12 are not significant enough to obtain a clear indication.

The outcome of the Wilcoxon test for the comparison of
MP-AIDEA with DE-Λ is reported in Table 18.

The comparison of MP-AIDEA with DE-Λ (Table 18)
shows that the median of MP-AIDEA is lower than the
median of DE-Λ for functions 3, 5, 6, 10, 12 and 13. Results
for the remaining functions 1, 2 and 7 are not significant
enough to obtain a clear indication.

Table 19 summarises the outcome of the Wilcoxon tests
for the CEC 2011 test set. The table reports the number of
functions forwhich themedian ofMP-AIDEA is lower, equal
or higher than the median of the competing algorithm. The
results in Table 19 show that MP-AIDEA clearly outper-
forms DE-Λ and has median lower than GA-MPC for 4 test
functions.

Table 19 Summary of Wilcoxon test results, CEC 2011 test set: MP-
AIDEA versus GA-MPC and DE-Λ. The table reports the number of
functions for which the median of MP-AIDEA is equal (Case 1), higher
(Case 2) or lower (Case 3) than the median of the competing algorithm

GA-MPC DE-Λ

Case 1: equal medians 0 0

Case 2: median of MP-AIDEA is greater 3 0

Case 3: median of MP-AIDEA is lower 4 6

Not significant 2 3

6.3.2 CEC 2014 test set

Codes for the algorithms UMOEAs, CLMSP, L-SHADE and
MVMO are avilable online (http://web.mysites.ntu.edu.sg/
epnsugan/PublicSite/Shared%20Documents/Forms/AllItems.
aspx). Wilcoxon test results for the comparison of MP-
AIDEA with these algorithms at 10, 30, 50 and 100 dimen-
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Table 20 Summary of Wilcoxon test results, CEC 2014. The table
reports the number of functions for which the median of MP-AIDEA
is equal (Case 1), higher (Case 2) or lower (Case 3) than the median of
the competing algorithm

nD = 10 nD = 30 nD = 50 nD = 100

UMOEAs

Case 1 3 0 0 0

Case 2 4 9 7 9

Case 3 11 9 11 9

Not significant 4 4 4 4

L-SHADE

Case 1 3 0 0 0

Case 2 8 17 13 10

Case 3 9 5 8 9

Not significant 2 0 1 3

MVMO

Case 1 0 0 0 0

Case 2 3 7 11 9

Case 3 13 10 8 10

Not significant 6 5 3 3

CMLSP

Case 1 0 0 0 0

Case 2 1 9 2 2

Case 3 21 13 20 20

Not significant 0 0 0 0

sions are reported in Appendix A (Tables 24, 25, 26, 27, 28,
29, 30, 31).

A summary of the obtained results is given in Table 20.
Table 20 shows the number of function for which Case 1, 2
or 3 in Table 16 are verified and the number of functions for
which the results are not significant enough to judge, for nD
equal to 10, 30, 50 and 100.

For nD = 10, the median of MP-AIDEA is lower than the
one of UMOEAs in 11 cases, while in 3 cases themedians are
equal and in 4 cases the median of UMOEAs is lower than
the median of MP-AIDEA. In 4 cases (functions 10, 17, 20
and 21), the results are not significant enough. For nD = 30
and nD = 100 the median of MP-AIDEA is lower than the
median of UMOEAs in 9 cases and the median of UMOEAs
is lower than the one ofMP-AIDEA for other 9 functions. For
4 functions, the results are not significant enough to obtain
a clear indication. The median of MP-AIDEA is lower than
the one of UMOEAs in 11 cases for nD = 50.

As regards the comparison with L-SHADE, MP-AIDEA
has lower median for a number of functions greater than L-
SHADE only for nD = 10 (9 functions).

In all dimension but nD = 50, the number of functions for
which the median ofMP-AIDEA is lower than the median of
MVMO is greater than the number of functions for which the
median of MVMO is lower than the median of MP-AIDEA.

Table 21 Success rate: CEC2011 test set. Highest success rates for each
function are shown in bold, and their total is reported at the bottom of
the table. MP-AIDEA* represents MP-AIDEA with settings npop = 1,
δlocal = 0.1 and nLR = 10

tol f MP-AIDEA MP-AIDEA* GA-MPC DE-Λ

1 1.0e−01 0.92 0.48 0.80 0.64

2 1.0e−01 0.40 0.20 0.12 0.40

3 1.0e−06 1.00 1.00 1.00 1.00

5 1.0e−01 0.44 0.20 0.16 0.04

6 1.0e+01 0.76 0.76 0.84 0.00

7 1.0e−01 0.92 0.64 0.04 0.72

10 1.0e−01 0.36 0.16 0.24 0.00

12 2.0e+00 0.24 0.00 0.20 0.00

13 1.0e+00 0.16 0.04 0.52 0.00

Total 7 1 3 2

In all the cases, MP-AIDEA has median lower than
CMLSP for the majority of the tested functions.

Summarizing, results of the Wilcoxon test show that MP-
AIDEA clearly outperforms CMLSP for all the values of nD,
gives similar or slightly better results than UMOEAs and
MVMO while is outperformed by L-SHADE for nD = 30,
nD = 50 and nD = 100.

6.4 Success rate

In this section, we present the success rate of MP-AIDEA
and the top performing algorithms on the test sets CEC 2011
and CEC 2014. As for the Wilcoxon test no algorithm par-
ticipating in the CEC 2005 was included in the comparison
due to the lack of availability of the source code.

The computation of the success rate SR is reported in
Algorithm 5 for a generic algorithm AG and a generic prob-
lem min f where n is the number of runs (Vasile et al.
2011). In Algorithm 5, x̄ (AG, i) denotes the lowest mini-
mum observed during the i-th run of the algorithm AG. The
quantity fglobal is the known global minimum of the func-
tion and tol f is a prescribed tolerance with respect to fglobal.
The index jsr represents the number of times algorithm AG
generates values lower or equal than fglobal + tol f . For each
test set, we report also the total number of problems in which
each of the tested algorithms has the best success rate.

6.4.1 CEC 2011 test set

For the calculation of the success rate on the test set CEC
2011, we consider the following algorithms: MP-AIDEA
with 4 populations (MP-AIDEA), adaptive δlocal and local
restart, MP-AIDEA with one population, nLR = 10 and
δlocal = 0.1 (MP-AIDEA*), GA-MPC and DE-Λ. Table 21
shows the obtained values of SR and the value of tol f used for
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Table 22 Success rate: CEC
2014, 10D and 30D

tol f MP-AIDEA MP-AIDEA* UMOEAs L-SHADE MVMO CMLSP

nD = 10

1 1.0e−06 1.00 1.00 1.00 1.00 0.00 0.00

2 1.0e−06 1.00 1.00 1.00 1.00 1.00 0.00

3 1.0e−06 1.00 1.00 1.00 1.00 1.00 0.00

4 1.0e−01 0.98 0.78 0.51 0.18 0.67 0.53

5 1.0e−01 0.75 0.33 0.06 0.04 0.12 0.00

7 1.0e−02 0.98 0.92 1.00 0.90 0.39 0.16

8 1.0e−01 0.86 1.00 0.98 1.00 1.00 0.00

9 1.0e+00 0.37 0.20 0.27 0.06 0.14 0.00

10 1.0e−01 0.33 0.00 0.18 0.98 0.00 0.00

11 1.0e+00 0.06 0.06 0.00 0.00 0.00 0.00

13 1.0e−01 0.92 0.53 1.00 1.00 1.00 0.24

14 1.0e−01 1.00 1.00 0.55 0.84 0.69 0.06

15 1.0e−01 0.04 0.00 0.00 0.00 0.00 0.00

16 1.0e+00 0.24 0.20 0.14 0.29 0.16 0.00

17 1.0e+01 0.53 0.45 0.37 0.98 0.57 0.10

18 1.0e+00 0.71 0.39 0.45 0.96 0.33 0.18

20 1.0e+00 0.78 0.98 0.88 1.00 0.96 0.18

21 1.0e+01 0.92 0.98 0.90 1.00 0.92 0.63

23 2.0e+02 0.00 0.00 0.00 0.00 0.00 0.00

24 2.0e+02 1.00 1.00 1.00 1.00 1.00 1.00

25 2.0e+02 1.00 0.98 0.86 0.75 0.96 0.96

28 2.0e+02 0.06 0.00 0.04 0.00 0.00 0.02

Total 12 7 6 12 5 1

nD = 30

1 1.0e−06 1.00 1.00 0.96 1.00 0.00 0.00

2 1.0e−06 1.00 1.00 1.00 1.00 0.18 0.00

3 1.0e−06 1.00 1.00 1.00 1.00 0.02 0.00

4 1.0e−06 1.00 1.00 0.86 1.00 1.00 0.00

5 2.0e+01 1.00 1.00 0.37 0.00 1.00 0.00

7 1.0e−04 1.00 1.00 1.00 1.00 0.73 0.86

8 1.0e−01 0.04 1.00 0.10 1.00 1.00 0.00

9 1.0e+01 0.00 0.04 0.47 0.94 0.00 0.02

10 1.0e−01 0.00 0.98 0.00 1.00 0.00 0.00

11 1.0e+03 0.08 0.22 0.22 0.12 0.02 0.00

13 1.0e−01 0.00 0.67 0.92 0.12 0.00 0.00

14 2.0e−01 0.96 0.53 0.41 0.12 0.76 0.00

15 2.0e+00 0.47 0.39 0.04 0.24 0.10 0.00

16 1.0e+01 0.47 0.65 0.14 1.00 0.61 0.00

17 5.0e+02 0.47 0.94 0.00 1.00 0.98 1.00

18 2.0e+01 0.25 0.33 0.43 1.00 0.75 0.75

20 2.0e+01 0.76 1.00 0.90 1.00 0.96 1.00

21 1.0e+01 0.02 0.98 0.00 0.25 0.04 0.04
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Table 22 continued tol f MP-AIDEA MP-AIDEA* UMOEAs L-SHADE MVMO CMLSP

23 2.0e+02 0.00 0.00 0.00 0.00 0.00 0.00

24 2.2e+02 0.18 0.76 0.04 0.00 0.00 0.41

25 2.0e+02 0.00 0.00 0.00 0.00 0.00 0.00

28 7.0e+02 0.20 0.10 0.04 0.00 0.00 0.63

Total 8 11 5 12 3 3

Highest success rates for each function are shown in bold. and their total is reported at the bottom of the table
for each value of nD. MP-AIDEA* represents MP-AIDEA with settings npop = 1 and δlocal = 0.1

Table 23 Success rate: CEC
2014, 50D and 100D

tol f MP-AIDEA MP-AIDEA* UMOEAs L-SHADE MVMO CMLSP

nD = 50

1 1.0e−06 1.00 1.00 1.00 0.00 0.00 0.00

2 1.0e−06 1.00 1.00 1.00 1.00 0.00 0.00

3 1.0e−06 1.00 1.00 0.80 1.00 0.00 0.00

4 1.0e−06 1.00 1.00 0.18 0.00 0.98 0.00

5 2.0e+01 1.00 1.00 0.35 0.00 1.00 0.00

7 1.0e−04 1.00 1.00 1.00 1.00 0.41 0.00

8 5.0e+00 0.18 1.00 0.51 1.00 0.94 0.00

9 5.0e+01 0.18 0.69 1.00 1.00 0.10 0.00

10 1.0e+01 0.12 0.98 0.16 1.00 0.10 0.00

11 3.0e+03 0.06 0.78 0.10 0.16 0.12 0.00

13 3.0e−01 0.49 0.65 1.00 1.00 0.94 0.20

14 2.0e−01 0.10 0.04 0.02 0.00 0.08 0.00

15 5.0e+00 0.57 0.94 0.14 0.39 0.49 0.00

16 1.8e+01 0.02 0.16 0.06 1.00 0.08 0.00

17 1.0e+03 0.41 0.98 0.00 0.12 0.88 0.04

18 1.0e+02 0.94 0.96 0.45 0.63 0.96 0.22

20 1.0e+02 0.51 0.96 0.63 1.00 1.00 1.00

21 1.0e+03 0.96 1.00 0.10 1.00 1.00 0.22

23 3.4e+02 0.00 0.00 0.00 0.00 0.00 0.00

24 2.6e+02 0.90 0.90 0.02 0.00 0.86 0.00

25 2.1e+02 0.02 0.18 0.02 0.12 0.08 0.02

28 1.1e+03 0.20 0.37 0.04 0.27 0.00 0.33

Total 8 15 5 10 4 1

nD = 100

1 1.0e−06 1.00 1.00 1.00 0.00 0.00 0.00

2 1.0e−06 1.00 1.00 1.00 1.00 0.00 0.00

3 1.0e−06 1.00 1.00 0.41 1.00 0.00 0.00

4 1.0e−06 0.92 0.78 0.00 0.00 0.35 0.00

5 2.0e+01 1.00 1.00 0.63 0.00 1.00 0.00

7 1.0e−04 1.00 1.00 1.00 1.00 0.82 0.00

8 5.0e+00 0.00 0.98 0.00 1.00 0.04 0.00

9 2.0e+02 0.88 1.00 1.00 1.00 0.61 0.00

10 5.0e+02 0.51 1.00 0.20 1.00 0.08 0.00
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Table 23 continued tol f MP-AIDEA MP-AIDEA* UMOEAs L-SHADE MVMO CMLSP

11 1.0e+04 0.55 1.00 0.59 0.06 0.57 0.00

13 4.0e−01 0.16 0.12 1.00 1.00 1.00 0.00

14 3.0e−01 0.45 0.16 1.00 1.00 1.00 0.90

15 2.0e+01 0.92 1.00 1.00 1.00 0.90 0.00

16 4.0e+01 0.02 0.12 0.00 0.96 0.00 0.00

17 3.0e+03 0.67 0.84 0.00 0.04 0.39 0.00

18 2.0e+02 0.41 1.00 0.00 0.10 1.00 0.00

20 3.0e+02 0.08 0.98 0.37 1.00 1.00 1.00

21 1.0e+03 0.02 0.98 0.00 0.00 0.18 0.00

23 3.7e+02 1.00 1.00 1.00 1.00 1.00 0.98

24 3.7e+02 0.57 0.04 0.00 0.00 0.98 0.00

25 2.5e+02 0.96 1.00 1.00 1.00 0.22 1.00

28 2.0e+03 0.27 0.27 0.00 0.00 0.00 0.04

Total 7 15 9 12 7 2

Highest success rates for each function are shown in bold and their total is reported at the bottom of the table
for each value of nD. MP-AIDEA* represents MP-AIDEA with settings npop = 1 and δlocal = 0.1

Algorithm 8 Calculation of the success rate
1: Apply AG to min f for nruns times and set jsr = 0
2: for i ∈ [1, . . . nruns ] do
3: Compute δ f = ‖ fglobal − f (x̄ (AG, i)) ‖
4: if δ f < tol f then
5: jsr = jsr + 1
6: end if
7: end for
8: SR = jsr/nruns

each function and shows thatMP-AIDEAoutperforms all the
other algorithms on most of the functions. The result against
GA-MPCwould be even better if a higher number of function
evaluation was considered, as explained in Sect. 6.2.2.

6.4.2 CEC 2014 test set

For the comparison on the test set CEC 2014, we consid-
ered the following algorithms: MP-AIDEA, MP-AIDEA*,
UMOEAs, CLMSP, L-SHADE and MVMO (http://web.
mysites.ntu.edu.sg/epnsugan/PublicSite/Shared%20Docum
ents/Forms/AllItems.aspx). The values of the success rates
for all tested algorithms are shown in Tables 22 and 23,
together with the associated values of tol f . The total number
of problems for which an algorithm yields the best success
rate is also reported.

For all dimensions, MP-AIDEA compares very well
against the other algorithms. In low dimension, the full adap-
tive settings is the most competitive while as the number
of dimensions increases the single population version with
δlocal = 0.1 results the most successful algorithm. These
results are in line with the results in Sect. 6.2.3 and confirm
the position of MP-AIDEA in the ranking.

7 Conclusions

This paper presented MP-AIDEA, an adaptive version
of inflationary differential evolution which automatically
adapts the two key parameters of differential evolution, CR,
F , the size of the restart bubble δlocal and the number of local
restarts nLR. The adaptation of the number of local restarts
is implemented through a mechanism that mitigates the pos-
sibility to detect the same local minimum multiple times.
This mechanism allows MP-AIDEA to automatically iden-
tify when to switch from a local to a global restart of the
population.

MP-AIDEA was tested on a total of 51 problems, taken
from three CEC competitions, grouped in three test sets
(named CEC 2015, CEC 2011 and CEC 2014) and com-
pared against 53 algorithms that participated in those three
competitions. Four different metrics were presented to assess
the performance of MP-AIDEA. Results demonstrated that
MP-AIDEA ranks first in the CEC 2015 outperforming all
the other algorithms for all problem dimensionalities. On the
CEC2011 test set,MP-AIDEAranks second, afterGA-MPC,
if we restrict the number of function evaluations to the one
prescribed by the competition. However, it was demonstrated
that, in problem 13, an increase in the number of function
evaluations does not provide any improvement of the objec-
tive value returned by GA-MPC but greatly improves the
result ofMP-AIDEA. It was noted, in fact, that GA-MPC has
a fast convergence but then tends to stagnate. On the contrary,
the convergence profile of MP-AIDEA is slower but, thanks
to the restart mechanism, achieves better objective values. In
this test set, in particular, the adaptation of the local restart
neighbourhood was shown to be effective providing compet-
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itive results compared to the settings of MP-AIDEA with a
single population and predefined values of δlocal and number
of restarts. This is confirmed by the Wilcoxon test, and the
success rate.

On the test set CEC 2014, results are not equally satis-
factory for all dimensions. MP-AIDEA is in the top three
algorithms except in dimension 30. When the number of
populations is reduced to one and δlocal = 1, MP-AIDEA
outperforms all other algorithms in dimension 50 and 100.

One part of the problem is the extra effort required by the
multi-population adaptive algorithm to identify the correct
value of δlocal. However, another part of the problem was
found in the contraction limit. This is in line with the theo-
retical findings by the authors who demonstrated that DE can
converge to a level set in the general case. Furthermore, it was
noted that the populations can naturally partition and form
clusters that independently converge to separate points. This
slow rate of convergence affects the restart and local search
mechanisms and the associated adaptation machinery. Since
the current implementation uses a synchronous restart and
adaptation of δlocal and nLR, the number of restarts might
be limited by the fact that the evolution of all populations
has to come to a stop before any of them can be restarted.
Future work will be dedicated to improve these aspects of
the algorithm.
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AWilcoxon test results

The following tables report the results of theWilcoxon test for
the comparison of MP-AIDEA with UMOEAs (Tables 24,
25), L-SHADE (Tables 26, 27), MVMO (Tables 28, 29 ) and
CMLSP (Tables 30, 31).

Table 24 Wilcoxon test results, CEC 2014: MP-AIDEA versus
UMOEAs, 10D and 30D

Both Left Right Result type

h p h p h p

nD = 10

1 0 1.00e+00 – – – – Case 1

2 0 1.00e+00 – – – – Case 1

3 0 1.00e+00 – – – – Case 1

4 1 2.18e−02 1 1.09e−02 0 9.89e−01 Case 3

5 1 3.74e−14 1 1.87e−14 0 1.00e+00 Case 3

7 1 9.89e−16 0 1.00e+00 1 4.95e−16 Case 2

8 1 1.79e−02 0 9.91e−01 1 8.94e−03 Case 2

9 1 7.80e−04 1 3.90e−04 0 1.00e+00 Case 3

10 0 3.17e−01 0 8.43e−01 0 1.59e−01 Not sign

11 1 1.63e−05 1 8.16e−06 0 1.00e+00 Case 3

13 1 8.19e−16 0 1.00e+00 1 4.10e−16 Case 2

14 1 1.20e−17 1 5.98e−18 0 1.00e+00 Case 3

15 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

16 1 2.27e−03 1 1.14e−03 0 9.99e−01 Case 3

17 0 5.60e−01 0 2.80e−01 0 7.22e−01 Not sign

18 1 5.36e−07 1 2.68e−07 0 1.00e+00 Case 3

20 0 2.06e−01 0 8.98e−01 0 1.03e−01 Not sign

21 0 2.11e−01 0 1.05e−01 0 8.96e−01 Not sign

23 1 1.34e−20 0 1.00e+00 1 6.68e−21 Case 2

24 1 1.54e−07 1 7.71e−08 0 1.00e+00 Case 3

25 1 2.39e−17 1 1.19e−17 0 1.00e+00 Case 3

28 1 2.22e−04 1 1.11e−04 0 1.00e+00 Case 3

nD = 30

1 1 1.12e−05 0 1.00e+00 1 5.60e−06 Case 2

2 1 9.47e−16 0 1.00e+00 1 4.74e−16 Case 2

3 1 6.52e−03 0 9.97e−01 1 3.26e−03 Case 2

4 1 1.10e−10 0 1.00e+00 1 5.51e−11 Case 2

5 1 8.62e−16 1 4.31e−16 0 1.00e+00 Case 3

7 1 3.25e−18 0 1.00e+00 1 1.63e−18 Case 2

8 0 6.99e−01 0 3.49e−01 0 6.53e−01 Not sign

9 1 2.38e−16 0 1.00e+00 1 1.19e−16 Case 2

10 0 2.55e−01 0 8.74e−01 0 1.28e−01 Not sign

11 0 6.67e−02 1 3.33e−02 0 9.67e−01 Not sign

13 1 3.50e−18 0 1.00e+00 1 1.75e−18 Case 2

14 1 1.64e−13 1 8.19e−14 0 1.00e+00 Case 3

15 1 3.64e−13 1 1.82e−13 0 1.00e+00 Case 3

16 1 1.05e−08 1 5.26e−09 0 1.00e+00 Case 3

17 1 1.56e−16 1 7.78e−17 0 1.00e+00 Case 3

18 0 1.48e−01 0 9.27e−01 0 7.41e−02 Not sign

20 1 2.84e−03 0 9.99e−01 1 1.42e−03 Case 2

21 1 5.93e−05 1 2.96e−05 0 1.00e+00 Case 3

23 1 1.39e−20 0 1.00e+00 1 6.95e−21 Case 2

24 1 5.44e−12 1 2.72e−12 0 1.00e+00 Case 3

25 1 9.60e−03 1 4.80e−03 0 9.95e−01 Case 3

28 1 3.87e−09 1 1.94e−09 0 1.00e+00 Case 3
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Table 25 Wilcoxon test results, CEC 2014: MP-AIDEA versus
UMOEAs, 50D and 100D

Both Left Right Result type

h p h p h p

nD = 50

1 0 1.59e−01 0 9.24e−01 0 7.97e−02 Not sign

2 1 1.95e−19 0 1.00e+00 1 9.77e−20 Case 2

3 1 8.85e−08 0 1.00e+00 1 4.43e−08 Case 2

4 1 1.27e−08 1 6.37e−09 0 1.00e+00 Case 3

5 1 1.11e−12 1 5.57e−13 0 1.00e+00 Case 3

7 1 1.33e−20 0 1.00e+00 1 6.66e−21 Case 2

8 0 7.14e−02 0 9.65e−01 1 3.57e−02 Not sign

9 1 3.45e−18 0 1.00e+00 1 1.73e−18 Case 2

10 1 5.37e−03 1 2.68e−03 0 9.97e−01 Case 3

11 1 1.43e−02 1 7.15e−03 0 9.93e−01 Case 3

13 1 3.30e−18 0 1.00e+00 1 1.65e−18 Case 2

14 1 3.72e−15 1 1.86e−15 0 1.00e+00 Case 3

15 1 2.06e−07 1 1.03e−07 0 1.00e+00 Case 3

16 0 2.28e−01 0 1.14e−01 0 8.87e−01 Not sign

17 1 7.51e−18 1 3.76e−18 0 1.00e+00 Case 3

18 1 4.45e−05 1 2.23e−05 0 1.00e+00 Case 3

20 1 2.77e−02 0 9.86e−01 1 1.38e−02 Case 2

21 1 8.87e−17 1 4.43e−17 0 1.00e+00 Case 3

23 1 1.39e−20 0 1.00e+00 1 6.95e−21 Case 2

24 1 1.79e−17 1 8.95e−18 0 1.00e+00 Case 3

25 0 5.03e−01 0 2.52e−01 0 7.50e−01 Not sign

28 1 3.16e−09 1 1.58e−09 0 1.00e+00 Case 3

nD = 100

1 0 8.22e−02 0 9.61e−01 1 4.11e−02 Not sign

2 1 5.25e−20 0 1.00e+00 1 2.63e−20 Case 2

3 0 1.24e−01 0 6.19e−02 0 9.39e−01 Not sign

4 1 2.91e−18 1 1.46e−18 0 1.00e+00 Case 3

5 0 4.99e−01 0 2.50e−01 0 7.53e−01 Not sign

7 1 1.36e−20 0 1.00e+00 1 6.81e−21 Case 2

8 1 3.57e−08 0 1.00e+00 1 1.78e−08 Case 2

9 1 3.30e−18 0 1.00e+00 1 1.65e−18 Case 2

10 1 5.36e−07 1 2.68e−07 0 1.00e+00 Case 3

11 0 9.79e−01 0 5.13e−01 0 4.89e−01 Not sign

13 1 3.30e−18 0 1.00e+00 1 1.65e−18 Case 2

14 1 3.94e−18 0 1.00e+00 1 1.97e−18 Case 2

15 1 1.57e−15 0 1.00e+00 1 7.87e−16 Case 2

16 1 3.34e−04 1 1.67e−04 0 1.00e+00 Case 3

17 1 4.70e−18 1 2.35e−18 0 1.00e+00 Case 3

18 1 7.96e−18 1 3.98e−18 0 1.00e+00 Case 3

20 1 1.35e−03 0 9.99e−01 1 6.73e−04 Case 2

21 1 5.29e−18 1 2.64e−18 0 1.00e+00 Case 3

23 1 1.39e−20 0 1.00e+00 1 6.95e−21 Case 2

24 1 1.90e−17 1 9.50e−18 0 1.00e+00 Case 3

25 1 2.65e−04 1 1.32e−04 0 1.00e+00 Case 3

28 1 5.01e−06 1 2.50e−06 0 1.00e+00 Case 3

Table 26 Wilcoxon test results, CEC 2014: MP-AIDEA versus L-
SHADE, 10D and 30D

Both Left Right Result type

h p h p h p

nD = 10

1 0 1.00e+00 – – – – Case 1

2 0 1.00e+00 – – – – Case 1

3 0 1.00e+00 – – – – Case 1

4 1 5.69e−12 1 2.85e−12 0 1.00e+00 Case 3

5 1 5.12e−15 1 2.56e−15 0 1.00e+00 Case 3

7 1 6.14e−06 0 1.00e+00 1 3.07e−06 Case 2

8 1 3.47e−03 0 9.98e−01 1 1.73e−03 Case 2

9 1 8.86e−09 1 4.43e−09 0 1.00e+00 Case 3

10 1 4.95e−17 0 1.00e+00 1 2.47e−17 Case 2

11 1 1.85e−02 0 9.91e−01 1 9.24e−03 Case 2

13 1 1.85e−07 0 1.00e+00 1 9.26e−08 Case 2

14 1 6.31e−17 1 3.16e−17 0 1.00e+00 Case 3

15 1 3.43e−05 1 1.72e−05 0 1.00e+00 Case 3

16 1 2.91e−02 0 9.86e−01 1 1.46e−02 Case 2

17 1 5.73e−05 0 1.00e+00 1 2.87e−05 Case 2

18 0 8.10e−01 0 5.98e−01 0 4.05e−01 Not sign

20 1 4.20e−05 0 1.00e+00 1 2.10e−05 Case 2

21 0 1.01e−01 0 9.50e−01 0 5.05e−02 Not sign

23 1 1.34e−20 1 6.68e−21 0 1.00e+00 Case 3

24 1 1.40e−05 1 7.00e−06 0 1.00e+00 Case 3

25 1 7.22e−13 1 3.61e−13 0 1.00e+00 Case 3

28 1 8.47e−11 1 4.23e−11 0 1.00e+00 Case 3

nD = 30

1 1 1.79e−07 0 1.00e+00 1 8.94e−08 Case 2

2 1 9.47e−16 0 1.00e+00 1 4.74e−16 Case 2

3 1 6.52e−03 0 9.97e−01 1 3.26e−03 Case 2

4 1 4.92e−20 0 1.00e+00 1 2.46e−20 Case 2

5 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

7 1 3.25e−18 0 1.00e+00 1 1.63e−18 Case 2

8 1 4.21e−20 0 1.00e+00 1 2.10e−20 Case 2

9 1 3.30e−18 0 1.00e+00 1 1.65e−18 Case 2

10 1 1.62e−18 0 1.00e+00 1 8.12e−19 Case 2

11 1 3.40e−07 0 1.00e+00 1 1.70e−07 Case 2

13 1 1.27e−17 0 1.00e+00 1 6.34e−18 Case 2

14 1 5.03e−17 1 2.52e−17 0 1.00e+00 Case 3

15 1 4.26e−02 1 2.13e−02 0 9.79e−01 Case 3

16 1 2.30e−16 0 1.00e+00 1 1.15e−16 Case 2

17 1 2.48e−14 0 1.00e+00 1 1.24e−14 Case 2

18 1 4.18e−18 0 1.00e+00 1 2.09e−18 Case 2

20 1 4.43e−18 0 1.00e+00 1 2.22e−18 Case 2

21 1 9.72e−13 0 1.00e+00 1 4.86e−13 Case 2

23 1 1.39e−20 0 1.00e+00 1 6.95e−21 Case 2

24 1 1.64e−10 1 8.21e−11 0 1.00e+00 Case 3

25 1 7.97e−13 0 1.00e+00 1 3.99e−13 Case 2

28 1 2.19e−11 1 1.09e−11 0 1.00e+00 Case 3
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Table 27 Wilcoxon test results, CEC 2014: MP-AIDEA versus L-
SHADE, 50D and 100D

Both Left Right Result type

h p h p h p

nD = 50

1 1 2.79e−20 1 1.39e−20 0 1.00e+00 Case 3

2 1 1.95e−19 0 1.00e+00 1 9.77e−20 Case 2

3 1 4.53e−20 0 1.00e+00 1 2.26e−20 Case 2

4 1 1.99e−18 1 9.93e−19 0 1.00e+00 Case 3

5 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

7 1 1.33e−20 0 1.00e+00 1 6.66e−21 Case 2

8 1 4.62e−19 0 1.00e+00 1 2.31e−19 Case 2

9 1 3.30e−18 0 1.00e+00 1 1.65e−18 Case 2

10 1 3.30e−18 0 1.00e+00 1 1.65e−18 Case 2

11 1 2.57e−08 0 1.00e+00 1 1.29e−08 Case 2

13 1 3.30e−18 0 1.00e+00 1 1.65e−18 Case 2

14 1 4.01e−17 1 2.00e−17 0 1.00e+00 Case 3

15 0 5.31e−02 1 2.65e−02 0 9.74e−01 Not sign

16 1 3.30e−18 0 1.00e+00 1 1.65e−18 Case 2

17 1 2.37e−09 1 1.19e−09 0 1.00e+00 Case 3

18 1 8.86e−11 1 4.43e−11 0 1.00e+00 Case 3

20 1 3.30e−18 0 1.00e+00 1 1.65e−18 Case 2

21 1 6.57e−12 0 1.00e+00 1 3.28e−12 Case 2

23 1 2.76e−05 1 1.38e−05 0 1.00e+00 Case 3

24 1 3.24e−18 1 1.62e−18 0 1.00e+00 Case 3

25 1 3.75e−14 0 1.00e+00 1 1.87e−14 Case 2

28 1 1.62e−03 0 9.99e−01 1 8.10e−04 Case 2

nD = 100

1 0 8.22e−02 0 9.61e−01 1 4.11e−02 Not sign

2 1 5.25e−20 0 1.00e+00 1 2.63e−20 Case 2

3 0 1.24e−01 0 6.19e−02 0 9.39e−01 Not sign

4 1 2.91e−18 1 1.46e−18 0 1.00e+00 Case 3

5 0 4.99e−01 0 2.50e−01 0 7.53e−01 Case 2

7 1 1.36e−20 0 1.00e+00 1 6.81e−21 Case 2

8 1 3.57e−08 0 1.00e+00 1 1.78e−08 Case 2

9 1 3.30e−18 0 1.00e+00 1 1.65e−18 Case 2

10 1 5.36e−07 1 2.68e−07 0 1.00e+00 Case 3

11 0 9.79e−01 0 5.13e−01 0 4.89e−01 Not sign

13 1 3.30e−18 0 1.00e+00 1 1.65e−18 Case 2

14 1 3.94e−18 0 1.00e+00 1 1.97e−18 Case 2

15 1 1.57e−15 0 1.00e+00 1 7.87e−16 Case 2

16 1 3.34e−04 1 1.67e−04 0 1.00e+00 Case 3

17 1 4.70e−18 1 2.35e−18 0 1.00e+00 Case 3

18 1 7.96e−18 1 3.98e−18 0 1.00e+00 Case 3

20 1 1.35e−03 0 9.99e−01 1 6.73e−04 Case 2

21 1 5.29e−18 1 2.64e−18 0 1.00e+00 Case 3

23 1 1.39e−20 0 1.00e+00 1 6.95e−21 Case 2

24 1 1.90e−17 1 9.50e−18 0 1.00e+00 Case 3

25 1 2.65e−04 1 1.32e−04 0 1.00e+00 Case 3

28 1 5.01e−06 1 2.50e−06 0 1.00e+00 Case 3

Table 28 Wilcoxon test results, CEC 2014: MP-AIDEA versus
MVMO, 10D and 30D

Both Left Right Result type

h p h p h p

nD = 10

1 1 1.39e−20 1 6.95e−21 0 1.00e+00 Case 3

2 1 1.39e−20 1 6.95e−21 0 1.00e+00 Case 3

3 1 1.35e−20 1 6.73e−21 0 1.00e+00 Case 3

4 1 6.66e−08 1 3.33e−08 0 1.00e+00 Case 3

5 1 3.64e−13 1 1.82e−13 0 1.00e+00 Case 3

7 1 2.31e−07 1 1.16e−07 0 1.00e+00 Case 3

8 1 1.35e−02 0 9.93e−01 1 6.75e−03 Case 2

9 1 5.49e−07 1 2.75e−07 0 1.00e+00 Case 3

10 1 2.32e−02 1 1.16e−02 0 9.89e−01 Case 3

11 0 9.15e−01 0 4.57e−01 0 5.45e−01 Not sign

13 1 1.75e−15 0 1.00e+00 1 8.77e−16 Case 2

14 1 8.38e−17 1 4.19e−17 0 1.00e+00 Case 3

15 1 1.60e−04 1 8.01e−05 0 1.00e+00 Case 3

16 0 4.14e−01 0 2.07e−01 0 7.95e−01 Not sign

17 0 1.37e−01 0 9.32e−01 0 6.87e−02 Not sign

18 1 1.54e−05 1 7.68e−06 0 1.00e+00 Case 3

20 0 7.72e−02 0 9.62e−01 1 3.86e−02 Not sign

21 0 7.08e−02 0 9.65e−01 1 3.54e−02 Not sign

23 1 1.34e−20 0 1.00e+00 1 6.68e−21 Case 2

24 1 1.88e−06 1 9.41e−07 0 1.00e+00 Case 3

25 1 1.36e−12 1 6.81e−13 0 1.00e+00 Case 3

28 0 1.95e−01 0 9.03e−01 0 9.77e−02 Not sign

nD = 30

1 1 1.28e−18 1 6.41e−19 0 1.00e+00 Case 3

2 1 3.08e−18 1 1.54e−18 0 1.00e+00 Case 3

3 1 1.15e−19 1 5.75e−20 0 1.00e+00 Case 3

4 0 1.22e−01 0 6.09e−02 0 9.40e−01 Not sign

5 0 7.72e−02 0 9.62e−01 1 3.86e−02 Not sign

7 1 1.43e−18 1 7.17e−19 0 1.00e+00 Case 3

8 1 2.73e−16 0 1.00e+00 1 1.36e−16 Case 2

9 1 2.42e−15 1 1.21e−15 0 1.00e+00 Case 3

10 1 4.33e−02 0 9.79e−01 1 2.16e−02 Case 2

11 0 2.11e−01 0 1.05e−01 0 8.96e−01 Not sign

13 0 3.81e−01 0 8.11e−01 0 1.90e−01 Not sign

14 1 4.33e−05 1 2.16e−05 0 1.00e+00 Case 3

15 1 3.91e−08 1 1.96e−08 0 1.00e+00 Case 3

16 0 1.25e−01 0 9.38e−01 0 6.27e−02 Not sign

17 1 6.57e−12 0 1.00e+00 1 3.28e−12 Case 2

18 1 1.62e−08 0 1.00e+00 1 8.09e−09 Case 2

20 1 8.56e−06 0 1.00e+00 1 4.28e−06 Case 2

21 1 4.53e−04 0 1.00e+00 1 2.27e−04 Case 2

23 1 1.39e−20 0 1.00e+00 1 6.95e−21 Case 2

24 1 3.34e−15 1 1.67e−15 0 1.00e+00 Case 3

25 1 3.29e−10 1 1.65e−10 0 1.00e+00 Case 3

28 1 3.64e−13 1 1.82e−13 0 1.00e+00 Case 3

123



M. Di Carlo et al.

Table 29 Wilcoxon test results, CEC 2014: MP-AIDEA versus
MVMO, 50D and 100D

Both Left Right Result type

h p h p h p

nD = 50

1 1 2.79e−20 1 1.39e−20 0 1.00e+00 Case 3

2 1 3.29e−18 1 1.65e−18 0 1.00e+00 Case 3

3 1 2.92e−18 1 1.46e−18 0 1.00e+00 Case 3

4 1 9.96e−03 1 4.98e−03 0 9.95e−01 Case 3

5 1 1.24e−05 0 1.00e+00 1 6.20e−06 Case 2

7 1 3.01e−18 1 1.51e−18 0 1.00e+00 Case 3

8 1 1.15e−15 0 1.00e+00 1 5.75e−16 Case 2

9 1 6.06e−06 1 3.03e−06 0 1.00e+00 Case 3

10 0 6.06e−01 0 3.03e−01 0 6.99e−01 Not sign

11 1 2.65e−04 0 1.00e+00 1 1.32e−04 Case 2

13 1 1.79e−07 0 1.00e+00 1 8.93e−08 Case 2

14 0 6.98e−01 0 3.49e−01 0 6.54e−01 Not sign

15 0 9.79e−01 0 4.89e−01 0 5.13e−01 Not sign

16 1 2.63e−02 0 9.87e−01 1 1.31e−02 Case 2

17 1 2.20e−08 0 1.00e+00 1 1.10e−08 Case 2

18 1 6.68e−15 0 1.00e+00 1 3.34e−15 Case 2

20 1 3.50e−18 0 1.00e+00 1 1.75e−18 Case 2

21 1 9.14e−10 0 1.00e+00 1 4.57e−10 Case 2

23 1 1.39e−20 0 1.00e+00 1 6.95e−21 Case 2

24 1 8.28e−08 1 4.14e−08 0 1.00e+00 Case 3

25 1 1.93e−09 0 1.00e+00 1 9.66e−10 Case 2

28 1 6.34e−15 1 3.17e−15 0 1.00e+00 Case 3

nD = 100

1 1 3.83e−20 1 1.92e−20 0 1.00e+00 Case 3

2 1 3.28e−18 1 1.64e−18 0 1.00e+00 Case 3

3 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

4 1 2.03e−16 1 1.01e−16 0 1.00e+00 Case 3

5 1 2.27e−12 0 1.00e+00 1 1.14e−12 Case 2

7 1 6.75e−18 1 3.37e−18 0 1.00e+00 Case 3

8 1 2.26e−17 0 1.00e+00 1 1.13e−17 Case 2

9 1 5.01e−04 1 2.51e−04 0 1.00e+00 Case 3

10 1 7.25e−13 1 3.63e−13 0 1.00e+00 Case 3

11 0 7.79e−01 0 3.89e−01 0 6.13e−01 Not sign

13 1 1.65e−16 0 1.00e+00 1 8.23e−17 Case 2

14 1 3.30e−18 0 1.00e+00 1 1.65e−18 Case 2

15 0 6.06e−01 0 6.99e−01 0 3.03e−01 Not sign

16 0 9.20e−01 0 5.43e−01 0 4.60e−01 Not sign

17 1 2.04e−04 1 1.02e−04 0 1.00e+00 Case 3

18 1 3.30e−18 0 1.00e+00 1 1.65e−18 Case 2

20 1 3.30e−18 0 1.00e+00 1 1.65e−18 Case 2

21 1 8.37e−03 0 9.96e−01 1 4.18e−03 Case 2

23 1 1.39e−20 0 1.00e+00 1 6.95e−21 Case 2

24 1 5.32e−17 0 1.00e+00 1 2.66e−17 Case 2

25 1 6.58e−16 1 3.29e−16 0 1.00e+00 Case 3

28 1 1.41e−15 1 7.06e−16 0 1.00e+00 Case 3

Table 30 Wilcoxon test results, CEC 2014: MP-AIDEA versus
CMLSP, 10D and 30D

Both Left Right Result type

h p h p h p

nD = 10

1 1 1.39e−20 1 6.95e−21 0 1.00e+00 Case 3

2 1 1.39e−20 1 6.95e−21 0 1.00e+00 Case 3

3 1 1.39e−20 1 6.95e−21 0 1.00e+00 Case 3

4 1 4.38e−18 1 2.19e−18 0 1.00e+00 Case 3

5 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

7 1 1.71e−15 1 8.56e−16 0 1.00e+00 Case 3

8 1 1.47e−19 1 7.36e−20 0 1.00e+00 Case 3

9 1 2.05e−18 1 1.02e−18 0 1.00e+00 Case 3

10 1 3.28e−18 1 1.64e−18 0 1.00e+00 Case 3

11 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

13 1 6.01e−15 1 3.01e−15 0 1.00e+00 Case 3

14 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

15 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

16 1 1.01e−17 1 5.03e−18 0 1.00e+00 Case 3

17 1 5.09e−08 1 2.55e−08 0 1.00e+00 Case 3

18 1 2.57e−13 1 1.29e−13 0 1.00e+00 Case 3

20 1 9.67e−15 1 4.84e−15 0 1.00e+00 Case 3

21 1 1.14e−06 1 5.71e−07 0 1.00e+00 Case 3

23 1 1.34e−20 0 1.00e+00 1 6.68e−21 Case 2

24 1 3.29e−18 1 1.64e−18 0 1.00e+00 Case 3

25 1 8.30e−07 1 4.15e−07 0 1.00e+00 Case 3

28 1 1.13e−04 1 5.64e−05 0 1.00e+00 Case 3

30D

1 1 1.28e−18 1 6.41e−19 0 1.00e+00 Case 3

2 1 3.08e−18 1 1.54e−18 0 1.00e+00 Case 3

3 1 1.15e−19 1 5.75e−20 0 1.00e+00 Case 3

4 1 3.12e−18 1 1.56e−18 0 1.00e+00 Case 3

5 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

7 1 1.42e−18 1 7.11e−19 0 1.00e+00 Case 3

8 1 2.76e−18 1 1.38e−18 0 1.00e+00 Case 3

9 1 3.86e−02 0 9.81e−01 1 1.93e−02 Case 2

10 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

11 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

13 1 6.32e−03 1 3.16e−03 0 9.97e−01 Case 3

14 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

15 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

16 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

17 1 3.19e−17 0 1.00e+00 1 1.59e−17 Case 2

18 1 4.55e−09 0 1.00e+00 1 2.28e−09 Case 2

20 1 3.21e−14 0 1.00e+00 1 1.61e−14 Case 2

21 1 4.99e−02 0 9.75e−01 1 2.49e−02 Case 2

23 1 1.85e−17 0 1.00e+00 1 9.24e−18 Case 2

24 1 1.40e−02 0 9.93e−01 1 7.02e−03 Case 2

25 1 3.58e−10 0 1.00e+00 1 1.79e−10 Case 2

28 1 5.36e−07 0 1.00e+00 1 2.68e−07 Case 2
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Table 31 Wilcoxon test results, CEC 2014: MP-AIDEA versus
CMLSP, 50D and 100D

Both Left Right Result type

h p h p h p

nD = 50

1 1 2.79e−20 1 1.39e−20 0 1.00e+00 Case 3

2 1 3.29e−18 1 1.65e−18 0 1.00e+00 Case 3

3 1 2.92e−18 1 1.46e−18 0 1.00e+00 Case 3

4 1 3.29e−18 1 1.65e−18 0 1.00e+00 Case 3

5 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

7 1 3.20e−18 1 1.60e−18 0 1.00e+00 Case 3

8 1 3.16e−18 1 1.58e−18 0 1.00e+00 Case 3

9 1 1.69e−17 1 8.46e−18 0 1.00e+00 Case 3

10 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

11 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

13 1 1.07e−04 1 5.33e−05 0 1.00e+00 Case 3

14 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

15 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

16 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

17 1 5.00e−16 1 2.50e−16 0 1.00e+00 Case 3

18 1 4.14e−15 1 2.07e−15 0 1.00e+00 Case 3

20 1 1.27e−17 0 1.00e+00 1 6.34e−18 Case 2

21 1 1.58e−12 1 7.89e−13 0 1.00e+00 Case 3

23 1 7.50e−19 1 3.75e−19 0 1.00e+00 Case 3

24 1 2.13e−17 1 1.07e−17 0 1.00e+00 Case 3

25 1 5.67e−04 0 1.00e+00 1 2.84e−04 Case 2

28 1 9.60e−03 1 4.80e−03 0 9.95e−01 Case 3

nD = 100

1 1 3.83e−20 1 1.92e−20 0 1.00e+00 Case 3

2 1 3.28e−18 1 1.64e−18 0 1.00e+00 Case 3

3 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

4 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

5 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

7 1 3.25e−18 1 1.63e−18 0 1.00e+00 Case 3

8 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

9 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

10 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

11 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

13 1 2.70e−13 1 1.35e−13 0 1.00e+00 Case 3

14 1 7.72e−10 0 1.00e+00 1 3.86e−10 Case 2

15 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

16 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

17 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

18 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

20 1 4.70e−18 0 1.00e+00 1 2.35e−18 Case 2

21 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

23 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

24 1 3.30e−18 1 1.65e−18 0 1.00e+00 Case 3

25 1 1.36e−04 1 6.81e−05 0 1.00e+00 Case 3

28 1 9.90e−14 1 4.95e−14 0 1.00e+00 Case 3
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