5,696 research outputs found

    Finite-time parameter estimation without persistence of excitation

    Get PDF
    International audienceThe problem of adaptive estimation of constant parameters in the linear regressor model is studied without the hypothesis that regressor is Persistently Excited (PE). First, the initial vector estimation problem is transformed to a series of the scalar ones using the method of Dynamic Regressor Extension and Mixing (DREM). Second, several adaptive estimation algorithms are proposed for the scalar scenario. In such a case, if the regressor may be nullified asymptotically or in a finite time, then the problem of estimation is also posed on a finite interval of time. The efficiency of the proposed algorithms is demonstrated in numeric experiments for an academic example

    On robust parameter estimation in finite-time without persistence of excitation

    Get PDF
    The problem of adaptive estimation of constant parameters in the linear regressor model is studied without the hypothesis that regressor is Persistently Excited (PE). First, the initial vector estimation problem is transformed to a series of the scalar ones using the method of Dynamic Regressor Extension and Mixing (DREM). Second, several adaptive estimation algorithms are proposed for the scalar scenario. In such a case, if the regressor may be nullified asymptotically or in a finite time, then the problem of estimation is also posed on a finite interval of time. Robustness of the proposed algorithms with respect to measurement noise and exogenous disturbances is analyzed. The efficiency of the designed estimators is demonstrated in numeric experiments for an academic example

    Fast Adaptive Robust Differentiator Based Robust-Adaptive Control of Grid-Tied Inverters with a New L Filter Design Method

    Get PDF
    In this research, a new nonlinear and adaptive state feedback controller with a fast-adaptive robust differentiator is presented for grid-tied inverters. All parameters and external disturbances are taken as uncertain in the design of the proposed controller without the disadvantages of singularity and over-parameterization. A robust differentiator based on the second order sliding mode is also developed with a fast-adaptive structure to be able to consider the time derivative of the virtual control input. Unlike the conventional backstepping, the proposed differentiator overcomes the problem of explosion of complexity. In the closed-loop control system, the three phase source currents and direct current (DC) bus voltage are assumed to be available for feedback. Using the Lyapunov stability theory, it is proven that the overall control system has the global asymptotic stability. In addition, a new simple L filter design method based on the total harmonic distortion approach is also proposed. Simulations and experimental results show that the proposed controller assurances drive the tracking errors to zero with better performance, and it is robust against all uncertainties. Moreover, the proposed L filter design method matches the total harmonic distortion (THD) aim in the design with the experimental result

    Connections Between Adaptive Control and Optimization in Machine Learning

    Full text link
    This paper demonstrates many immediate connections between adaptive control and optimization methods commonly employed in machine learning. Starting from common output error formulations, similarities in update law modifications are examined. Concepts in stability, performance, and learning, common to both fields are then discussed. Building on the similarities in update laws and common concepts, new intersections and opportunities for improved algorithm analysis are provided. In particular, a specific problem related to higher order learning is solved through insights obtained from these intersections.Comment: 18 page

    Concurrent Learning Adaptive Model Predictive Control with Pseudospectral Implementation

    Full text link
    This paper presents a control architecture in which a direct adaptive control technique is used within the model predictive control framework, using the concurrent learning based approach, to compensate for model uncertainties. At each time step, the control sequences and the parameter estimates are both used as the optimization arguments, thereby undermining the need for switching between the learning phase and the control phase, as is the case with hybrid-direct-indirect control architectures. The state derivatives are approximated using pseudospectral methods, which are vastly used for numerical optimal control problems. Theoretical results and numerical simulation examples are used to establish the effectiveness of the architecture.Comment: 21 pages, 13 figure
    corecore