99 research outputs found

    Hellinger KL-UCB based Bandit Algorithms for Markovian and i.i.d. Settings

    Full text link
    In the regret-based formulation of multi-armed bandit (MAB) problems, except in rare instances, much of the literature focuses on arms with i.i.d. rewards. In this paper, we consider the problem of obtaining regret guarantees for MAB problems in which the rewards of each arm form a Markov chain which may not belong to a single parameter exponential family. To achieve logarithmic regret in such problems is not difficult: a variation of standard KL-UCB does the job. However, the constants obtained from such an analysis are poor for the following reason: i.i.d. rewards are a special case of Markov rewards and it is difficult to design an algorithm that works well independent of whether the underlying model is truly Markovian or i.i.d. To overcome this issue, we introduce a novel algorithm that identifies whether the rewards from each arm are truly Markovian or i.i.d. using a Hellinger distance-based test. Our algorithm then switches from using a standard KL-UCB to a specialized version of KL-UCB when it determines that the arm reward is Markovian, thus resulting in low regret for both i.i.d. and Markovian settings

    Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems

    Full text link
    Multi-armed bandit problems are the most basic examples of sequential decision problems with an exploration-exploitation trade-off. This is the balance between staying with the option that gave highest payoffs in the past and exploring new options that might give higher payoffs in the future. Although the study of bandit problems dates back to the Thirties, exploration-exploitation trade-offs arise in several modern applications, such as ad placement, website optimization, and packet routing. Mathematically, a multi-armed bandit is defined by the payoff process associated with each option. In this survey, we focus on two extreme cases in which the analysis of regret is particularly simple and elegant: i.i.d. payoffs and adversarial payoffs. Besides the basic setting of finitely many actions, we also analyze some of the most important variants and extensions, such as the contextual bandit model.Comment: To appear in Foundations and Trends in Machine Learnin

    Distributed Algorithms for Learning and Cognitive Medium Access with Logarithmic Regret

    Get PDF
    The problem of distributed learning and channel access is considered in a cognitive network with multiple secondary users. The availability statistics of the channels are initially unknown to the secondary users and are estimated using sensing decisions. There is no explicit information exchange or prior agreement among the secondary users. We propose policies for distributed learning and access which achieve order-optimal cognitive system throughput (number of successful secondary transmissions) under self play, i.e., when implemented at all the secondary users. Equivalently, our policies minimize the regret in distributed learning and access. We first consider the scenario when the number of secondary users is known to the policy, and prove that the total regret is logarithmic in the number of transmission slots. Our distributed learning and access policy achieves order-optimal regret by comparing to an asymptotic lower bound for regret under any uniformly-good learning and access policy. We then consider the case when the number of secondary users is fixed but unknown, and is estimated through feedback. We propose a policy in this scenario whose asymptotic sum regret which grows slightly faster than logarithmic in the number of transmission slots.Comment: Submitted to IEEE JSAC on Advances in Cognitive Radio Networking and Communications, Dec. 2009, Revised May 201

    Distributed Channel Access for Control Over Unknown Memoryless Communication Channels

    Get PDF
    We consider the distributed channel access problem for a system consisting of multiple control subsystems that close their loop over a shared wireless network. We propose a distributed method for providing deterministic channel access without requiring explicit information exchange between the subsystems. This is achieved by utilizing timers for prioritizing channel access with respect to a local cost which we derive by transforming the control objective cost to a form that allows its local computation. This property is then exploited for developing our distributed deterministic channel access scheme. A framework to verify the stability of the system under the resulting scheme is then proposed. Next, we consider a practical scenario in which the channel statistics are unknown. We propose learning algorithms for learning the parameters of imperfect communication links for estimating the channel quality and, hence, define the local cost as a function of this estimation and control performance. We establish that our learning approach results in collision-free channel access. The behavior of the overall system is exemplified via a proof-of-concept illustrative example, and the efficacy of this mechanism is evaluated for large-scale networks via simulations.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    • …
    corecore