1,446 research outputs found

    The Activation-Relaxation Technique : ART nouveau and kinetic ART

    Get PDF
    The evolution of many systems is dominated by rare activated events that occur on timescale ranging from nanoseconds to the hour or more. For such systems, simulations must leave aside the full thermal description to focus specifically on mechanisms that generate a configurational change. We present here the activation relaxation technique (ART), an open-ended saddle point search algorithm, and a series of recent improvements to ART nouveau and kinetic ART, an ART-based on-the-fly off-lattice self-learning kinetic Monte Carlo method

    Large-N solutions of the Heisenberg and Hubbard-Heisenberg models on the anisotropic triangular lattice: application to Cs2_2CuCl4_4 and to the layered organic superconductors κ\kappa-(BEDT-TTF)2_2X

    Full text link
    We solve the Sp(N) Heisenberg and SU(N) Hubbard-Heisenberg models on the anisotropic triangular lattice in the large-N limit. These two models may describe respectively the magnetic and electronic properties of the family of layered organic materials κ\kappa-(BEDT-TTF)2_2X. The Heisenberg model is also relevant to the frustrated antiferromagnet, Cs2_2CuCl4_4. We find rich phase diagrams for each model. The Sp(N) antiferromagnet is shown to have five different phases as a function of the size of the spin and the degree of anisotropy of the triangular lattice. The effects of fluctuations at finite-N are also discussed. For parameters relevant to Cs2_2CuCl4_4 the ground state either exhibits incommensurate spin order, or is in a quantum disordered phase with deconfined spin-1/2 excitations and topological order. The SU(N) Hubbard-Heisenberg model exhibits an insulating dimer phase, an insulating box phase, a semi-metallic staggered flux phase (SFP), and a metallic uniform phase. The uniform and SFP phases exhibit a pseudogap. A metal-insulator transition occurs at intermediate values of the interaction strength.Comment: Typos corrected, one reference added. 20 pages, 17 figures, RevTeX 3.

    Phase Diagram of β\beta'-(BEDT-TTF)2_2ICl2_2 under High Pressure Based on the First-Principles Electronic Structure

    Full text link
    We present a theoretical study on the superconductivity of β\beta'-(BEDT-TTF)2_2ICl2_2 at Tc=T_{\rm c}=14.2 K under a high hydrostatic pressure recently found, which is the highest among organic superconductors. In the present work, we study an effective model using the fluctuation-exchange (FLEX) approximation based on the results of first-principles calculation. In the obtained phase diagram, the superconductivity with dxyd_{xy}-like symmetry is realized next to the antiferromagnetic phase, as a result of the one-dimensional to two-dimensional crossover driven by the pressure.Comment: 4 pages, 3 figures. accepted for publication in J. Phys. Soc. Jpn. errors correcte

    Diffusion rates of Cu adatoms on Cu(111) in the presence of an adisland nucleated at FCC or HCP sites

    Get PDF
    The surface diffusion of Cu adatoms in the presence of an adisland at FCC or HCP sites on Cu(111) is studied using the EAM potential derived by Mishin {\it et al.} [Phys. Rev. B {\bf 63} 224106 (2001)]. The diffusion rates along straight (with close-packed edges) steps with (100) and (111)-type microfacets (resp. step A and step B) are first investigated using the transition state theory in the harmonic approximation. It is found that the classical limit beyond which the diffusion rates follow an Arrhenius law is reached above the Debye temperature. The Vineyard attempt frequencies and the (static) energy barriers are reported. Then a comparison is made with the results of more realistic classical molecular dynamic simulations which also exhibit an Arrhenius-like behavior. It is concluded that the corresponding energy barriers are completely consistent with the static ones within the statistical errors and that the diffusion barrier along step B is significantly larger than along step A. In contrast the prefactors are very different from the Vineyard frequencies. They increase with the static energy barrier in agreement with the Meyer-Neldel compensation rule and this increase is well approximated by the law proposed by Boisvert {\it et al.} [Phys. Rev. Lett. {\bf 75} 469 (1995)]. As a consequence, the remaining part of this work is devoted to the determination of static energy barriers for a large number of diffusion events that can occur in the presence of an adisland. In particular, it is found that the corner crossing diffusion process for triangular adislands is markedly different for the two types of borders (A or B). From this set of results the diffusion rates of the most important atomic displacements can be predicted and used as input in Kinetic Monte-Carlo simulations

    A Practical Guide to Surface Kinetic Monte Carlo Simulations

    Get PDF
    This review article is intended as a practical guide for newcomers to the field of kinetic Monte Carlo (KMC) simulations, and specifically to lattice KMC simulations as prevalently used for surface and interface applications. We will provide worked out examples using the kmos code, where we highlight the central approximations made in implementing a KMC model as well as possible pitfalls. This includes the mapping of the problem onto a lattice and the derivation of rate constant expressions for various elementary processes. Example KMC models will be presented within the application areas surface diffusion, crystal growth and heterogeneous catalysis, covering both transient and steady-state kinetics as well as the preparation of various initial states of the system. We highlight the sensitivity of KMC models to the elementary processes included, as well as to possible errors in the rate constants. For catalysis models in particular, a recurrent challenge is the occurrence of processes at very different timescales, e.g. fast diffusion processes and slow chemical reactions. We demonstrate how to overcome this timescale disparity problem using recently developed acceleration algorithms. Finally, we will discuss how to account for lateral interactions between the species adsorbed to the lattice, which can play an important role in all application areas covered here.Comment: This document is the final Author's version of a manuscript that has been peer reviewed and accepted for publication in Frontiers in Chemistry. To access the final edited and published work see https://www.frontiersin.org/articles/10.3389/fchem.2019.00202/abstrac
    corecore