238 research outputs found

    Finite-SNR Diversity-Multiplexing-Delay Tradeoff in Half-Duplex Hybrid ARQ Relay Channels

    No full text
    International audienceIn this paper, we consider a delay-limited hybrid automatic repeat request (HARQ) protocol that makes use of incremental redundancy over the three-node decode-and-forward (DF) relay fading channel where one source cooperates with a relay to transmit information to the destination. We provide an estimate of the diversity-multiplexing tradeoff (DMT) at finite signal to noise ratio (SNR) based on tight bounds on outage probabilities for two channel models. The results for the long term quasi-static channel highlight the distributed diversity, ie. the cooperative space diversity, and the HARQ coding gain, achieved by soft combining the successive transmitted punctured codewords via incremental redundancy. On the other hand, the results for the short term quasi-static channel illustrate the diversity gains obtained thanks to cooperative space diversity and time diversity, along with the HARQ coding gain. Using the DMT formulation, we show that equal power partitioning between the source and the relay nodes provides close to optimal performance. Furthermore, thanks to the extension of the finite-SNR DMT to the finite-SNR diversity-multiplexing-delay tradeoff, we show that, unlike the asymptotic SNR analysis, the ARQ delay, defined as the number of retransmissions rounds, impacts the performance of the HARQ relay protocol for high effective multiplexing gain

    Multiple Access in Aerial Networks: From Orthogonal and Non-Orthogonal to Rate-Splitting

    Get PDF
    Recently, interest on the utilization of unmanned aerial vehicles (UAVs) has aroused. Specifically, UAVs can be used in cellular networks as aerial users for delivery, surveillance, rescue search, or as an aerial base station (aBS) for communication with ground users in remote uncovered areas or in dense environments requiring prompt high capacity. Aiming to satisfy the high requirements of wireless aerial networks, several multiple access techniques have been investigated. In particular, space-division multiple access(SDMA) and power-domain non-orthogonal multiple access (NOMA) present promising multiplexing gains for aerial downlink and uplink. Nevertheless, these gains are limited as they depend on the conditions of the environment. Hence, a generalized scheme has been recently proposed, called rate-splitting multiple access (RSMA), which is capable of achieving better spectral efficiency gains compared to SDMA and NOMA. In this paper, we present a comprehensive survey of key multiple access technologies adopted for aerial networks, where aBSs are deployed to serve ground users. Since there have been only sporadic results reported on the use of RSMA in aerial systems, we aim to extend the discussion on this topic by modelling and analyzing the weighted sum-rate performance of a two-user downlink network served by an RSMA-based aBS. Finally, related open issues and future research directions are exposed.Comment: 16 pages, 6 figures, submitted to IEEE Journa

    Multiple Access Techniques for Next Generation Wireless: Recent Advances and Future Perspectives

    Get PDF
    The advances in multiple access techniques has been one of the key drivers in moving from one cellular generation to another. Starting from the first generation, several multiple access techniques have been explored in different generations and various emerging multiplexing/multiple access techniques are being investigated for the next generation of cellular networks. In this context, this paper first provides a detailed review on the existing Space Division Multiple Access (SDMA) related works. Subsequently, it highlights the main features and the drawbacks of various existing and emerging multiplexing/multiple access techniques. Finally, we propose a novel concept of clustered orthogonal signature division multiple access for the next generation of cellular networks. The proposed concept envisions to employ joint antenna coding in order to enhance the orthogonality of SDMA beams with the objective of enhancing the spectral efficiency of future cellular networks
    • …
    corecore