58 research outputs found

    Frameless ALOHA with Reliability-Latency Guarantees

    Get PDF
    One of the novelties brought by 5G is that wireless system design has increasingly turned its focus on guaranteeing reliability and latency. This shifts the design objective of random access protocols from throughput optimization towards constraints based on reliability and latency. For this purpose, we use frameless ALOHA, which relies on successive interference cancellation (SIC), and derive its exact finite-length analysis of the statistics of the unresolved users (reliability) as a function of the contention period length (latency). The presented analysis can be used to derive the reliability-latency guarantees. We also optimize the scheme parameters in order to maximize the reliability within a given latency. Our approach represents an important step towards the general area of design and analysis of access protocols with reliability-latency guarantees.Comment: Accepted for presentation at IEEE Globecom 201

    Reliability-Latency Performance of Frameless ALOHA with and without Feedback

    Get PDF
    This paper presents a finite length analysis of multislot type frameless ALOHA based on a dynamic programming approach. The analysis is exact, but its evaluation is only feasible for moderate number of users due to the computational complexity. The analysis is then extended to derive continuous approximations of its key parameters, which, apart from providing an insight into the decoding process, make it possible to estimate the packet error rate with very low computational complexity. Finally, a feedback scheme is presented in which the slot access scheme is dynamically adapted according to the approximate analysis in order to minimize the packet error rate. The results indicate that the introduction of feedback can substantially improve the performance of frameless ALOH

    Unequal Error Protection in Coded Slotted ALOHA

    Full text link
    We analyze the performance of coded slotted ALOHA systems for a scenario where users have different error protection requirements and correspondingly can be divided into user classes. The main goal is to design the system so that the requirements for each class are satisfied. To that end, we derive analytical error floor approximations of the packet loss rate for each class in the finite frame length regime, as well as the density evolution in the asymptotic case. Based on this analysis, we propose a heuristic approach for the optimization of the degree distributions to provide the required unequal error protection. In addition, we analyze the decoding delay for users in different classes and show that better protected users experience a smaller average decoding delay

    Finite Length Analysis of Irregular Repetition Slotted ALOHA in the Waterfall Region

    Get PDF
    A finite length analysis is introduced for irregular repetition slotted ALOHA (IRSA) that enables to accurately estimate its performance in the moderate-to-high packet loss probability regime, i.e., in the so-called waterfall region. The analysis is tailored to the collision channel model, which enables mapping the description of the successive interference cancellation process onto the iterative erasure decoding of low-density parity-check codes. The analysis provides accurate estimates of the packet loss probability of IRSA in the waterfall region as demonstrated by Monte Carlo simulations.Comment: Accepted for publication in the IEEE Communications Letter

    Reliability-Latency Performance of Frameless ALOHA with and without Feedback

    Get PDF
    This paper presents a finite length analysis of multislot type frameless ALOHA based on a dynamic programming approach. The analysis is exact, but its evaluation is only feasible for moderate number of users due to the computational complexity. The analysis is then extended to derive continuous approximations of its key parameters, which, apart from providing an insight into the decoding process, make it possible to estimate the packet error rate with very low computational complexity. Finally, a feedback scheme is presented in which the slot access scheme is dynamically adapted according to the approximate analysis in order to minimize the packet error rate. The results indicate that the introduction of feedback can substantially improve the performance of frameless ALOH
    corecore