17,276 research outputs found

    Families of L-functions and their Symmetry

    Full text link
    In [90] the first-named author gave a working definition of a family of automorphic L-functions. Since then there have been a number of works [33], [107], [67] [47], [66] and especially [98] by the second and third-named authors which make it possible to give a conjectural answer for the symmetry type of a family and in particular the universality class predicted in [64] for the distribution of the zeros near s=1/2. In this note we carry this out after introducing some basic invariants associated to a family

    Fast generation of 3D deformable moving surfaces

    Get PDF
    Dynamic surface modeling is an important subject of geometric modeling due to their extensive applications in engineering design, entertainment and medical visualization. Many deformable objects in the real world are dynamic objects as their shapes change over time. Traditional geometric modeling methods are mainly concerned with static problems, therefore unsuitable for the representation of dynamic objects. Apart from the definition of a dynamic modeling problem, another key issue is how to solve the problem. Because of the complexity of the representations, currently the finite element method or finite difference method is usually used. Their major shortcoming is the excessive computational cost, hence not ideal for applications requiring real-time performance. We propose a representation of dynamic surface modeling with a set of fourth order dynamic partial differential equations (PDEs). To solve these dynamic PDEs accurately and efficiently, we also develop an effective resolution method. This method is further extended to achieve local deformation and produce n-sided patches. It is demonstrated that this new method is almost as fast and accurate as the analytical closed form resolution method and much more efficient and accurate than the numerical methods
    • …
    corecore