664 research outputs found

    Forbidden ordinal patterns in higher dimensional dynamics

    Full text link
    Forbidden ordinal patterns are ordinal patterns (or `rank blocks') that cannot appear in the orbits generated by a map taking values on a linearly ordered space, in which case we say that the map has forbidden patterns. Once a map has a forbidden pattern of a given length L0L_{0}, it has forbidden patterns of any length LL0L\ge L_{0} and their number grows superexponentially with LL. Using recent results on topological permutation entropy, we study in this paper the existence and some basic properties of forbidden ordinal patterns for self maps on n-dimensional intervals. Our most applicable conclusion is that expansive interval maps with finite topological entropy have necessarily forbidden patterns, although we conjecture that this is also the case under more general conditions. The theoretical results are nicely illustrated for n=2 both using the naive counting estimator for forbidden patterns and Chao's estimator for the number of classes in a population. The robustness of forbidden ordinal patterns against observational white noise is also illustrated.Comment: 19 pages, 6 figure

    TR-2012001: Algebraic Algorithms

    Full text link

    TR-2013009: Algebraic Algorithms

    Full text link

    A computer algebra user interface manifesto

    Full text link
    Many computer algebra systems have more than 1000 built-in functions, making expertise difficult. Using mock dialog boxes, this article describes a proposed interactive general-purpose wizard for organizing optional transformations and allowing easy fine grain control over the form of the result even by amateurs. This wizard integrates ideas including: * flexible subexpression selection; * complete control over the ordering of variables and commutative operands, with well-chosen defaults; * interleaving the choice of successively less main variables with applicable function choices to provide detailed control without incurring a combinatorial number of applicable alternatives at any one level; * quick applicability tests to reduce the listing of inapplicable transformations; * using an organizing principle to order the alternatives in a helpful manner; * labeling quickly-computed alternatives in dialog boxes with a preview of their results, * using ellipsis elisions if necessary or helpful; * allowing the user to retreat from a sequence of choices to explore other branches of the tree of alternatives or to return quickly to branches already visited; * allowing the user to accumulate more than one of the alternative forms; * integrating direct manipulation into the wizard; and * supporting not only the usual input-result pair mode, but also the useful alternative derivational and in situ replacement modes in a unified window.Comment: 38 pages, 12 figures, to be published in Communications in Computer Algebr

    A lifting and recombination algorithm for rational factorization of sparse polynomials

    Get PDF
    We propose a new lifting and recombination scheme for rational bivariate polynomial factorization that takes advantage of the Newton polytope geometry. We obtain a deterministic algorithm that can be seen as a sparse version of an algorithm of Lecerf, with now a polynomial complexity in the volume of the Newton polytope. We adopt a geometrical point of view, the main tool being derived from some algebraic osculation criterions in toric varieties.Comment: 22 page

    Computing Chebyshev knot diagrams

    Get PDF
    A Chebyshev curve C(a,b,c,\phi) has a parametrization of the form x(t)=Ta(t); y(t)=T_b(t) ; z(t)= Tc(t + \phi), where a,b,c are integers, Tn(t) is the Chebyshev polynomial of degree n and \phi \in \RR. When C(a,b,c,\phi) has no double points, it defines a polynomial knot. We determine all possible knots when a, b and c are given.Comment: 8
    corecore