3,370 research outputs found

    On the number of k-dominating independent sets

    Get PDF
    We study the existence and the number of kk-dominating independent sets in certain graph families. While the case k=1k=1 namely the case of maximal independent sets - which is originated from Erd\H{o}s and Moser - is widely investigated, much less is known in general. In this paper we settle the question for trees and prove that the maximum number of kk-dominating independent sets in nn-vertex graphs is between ck⋅22knc_k\cdot\sqrt[2k]{2}^n and ck′⋅2k+1nc_k'\cdot\sqrt[k+1]{2}^n if k≥2k\geq 2, moreover the maximum number of 22-dominating independent sets in nn-vertex graphs is between c⋅1.22nc\cdot 1.22^n and c′⋅1.246nc'\cdot1.246^n. Graph constructions containing a large number of kk-dominating independent sets are coming from product graphs, complete bipartite graphs and with finite geometries. The product graph construction is associated with the number of certain MDS codes.Comment: 13 page

    The still-Life density problem and its generalizations

    Full text link
    A "still Life" is a subset S of the square lattice Z^2 fixed under the transition rule of Conway's Game of Life, i.e. a subset satisfying the following three conditions: 1. No element of Z^2-S has exactly three neighbors in S; 2. Every element of S has at least two neighbors in S; 3. Every element of S has at most three neighbors in S. Here a ``neighbor'' of any x \in Z^2 is one of the eight lattice points closest to x other than x itself. The "still-Life conjecture" is the assertion that a still Life cannot have density greater than 1/2 (a bound easily attained, for instance by {(x,y): x is even}). We prove this conjecture, showing that in fact condition 3 alone ensures that S has density at most 1/2. We then consider variations of the problem such as changing the number of allowed neighbors or the definition of neighborhoods; using a variety of methods we find some partial results and many new open problems and conjectures.Comment: 29 pages, including many figures drawn as LaTeX "pictures

    Minimizing the regularity of maximal regular antichains of 2- and 3-sets

    Full text link
    Let n⩾3n\geqslant 3 be a natural number. We study the problem to find the smallest rr such that there is a family A\mathcal{A} of 2-subsets and 3-subsets of [n]={1,2,...,n}[n]=\{1,2,...,n\} with the following properties: (1) A\mathcal{A} is an antichain, i.e. no member of A\mathcal A is a subset of any other member of A\mathcal A, (2) A\mathcal A is maximal, i.e. for every X∈2[n]∖AX\in 2^{[n]}\setminus\mathcal A there is an A∈AA\in\mathcal A with X⊆AX\subseteq A or A⊆XA\subseteq X, and (3) A\mathcal A is rr-regular, i.e. every point x∈[n]x\in[n] is contained in exactly rr members of A\mathcal A. We prove lower bounds on rr, and we describe constructions for regular maximal antichains with small regularity.Comment: 7 pages, updated reference
    • …
    corecore