327 research outputs found

    Uniformly convergent finite element and finite difference methods for singularly perturbed ordinary differential equations

    Get PDF
    This thesis is concerned with uniformly convergent finite element and finite difference methods for numerically solving singularly perturbed two-point boundary value problems. We examine the following four problems: (i) high order problem of reaction-diffusion type; (ii) high order problem of convection-diffusion type; (iii) second order interior turning point problem; (iv) semilinear reaction-diffusion problem. Firstly, we consider high order problems of reaction-diffusion type and convection-diffusion type. Under suitable hypotheses, the coercivity of the associated bilinear forms is proved and representation results for the solutions of such problems are given. It is shown that, on an equidistant mesh, polynomial schemes cannot achieve a high order of convergence which is uniform in the perturbation parameter. Piecewise polynomial Galerkin finite element methods are then constructed on a Shishkin mesh. High order convergence results, which are uniform in the perturbation parameter, are obtained in various norms. Secondly, we investigate linear second order problems with interior turning points. Piecewise linear Galerkin finite element methods are generated on various piecewise equidistant meshes designed for such problems. These methods are shown to be convergent, uniformly in the singular perturbation parameter, in a weighted energy norm and the usual L2 norm. Finally, we deal with a semilinear reaction-diffusion problem. Asymptotic properties of solutions to this problem are discussed and analysed. Two simple finite difference schemes on Shishkin meshes are applied to the problem. They are proved to be uniformly convergent of second order and fourth order respectively. Existence and uniqueness of a solution to both schemes are investigated. Numerical results for the above methods are presented

    Robust Numerical Methods for Singularly Perturbed Differential Equations--Supplements

    Full text link
    The second edition of the book "Roos, Stynes, Tobiska -- Robust Numerical Methods for Singularly Perturbed Differential Equations" appeared many years ago and was for many years a reliable guide into the world of numerical methods for singularly perturbed problems. Since then many new results came into the game, we present some selected ones and the related sources.Comment: arXiv admin note: text overlap with arXiv:1909.0827

    Layer-adapted meshes for convection-diffusion problems

    Get PDF
    This is a book on numerical methods for singular perturbation problems - in particular stationary convection-dominated convection-diffusion problems. More precisely it is devoted to the construction and analysis of layer-adapted meshes underlying these numerical methods. An early important contribution towards the optimization of numerical methods by means of special meshes was made by N.S. Bakhvalov in 1969. His paper spawned a lively discussion in the literature with a number of further meshes being proposed and applied to various singular perturbation problems. However, in the mid 1980s this development stalled, but was enlivend again by G.I. Shishkin's proposal of piecewise- equidistant meshes in the early 1990s. Because of their very simple structure they are often much easier to analyse than other meshes, although they give numerical approximations that are inferior to solutions on competing meshes. Shishkin meshes for numerous problems and numerical methods have been studied since and they are still very much in vogue. With this contribution we try to counter this development and lay the emphasis on more general meshes that - apart from performing better than piecewise-uniform meshes - provide a much deeper insight in the course of their analysis. In this monograph a classification and a survey are given of layer-adapted meshes for convection-diffusion problems. It tries to give a comprehensive review of state-of-the art techniques used in the convergence analysis for various numerical methods: finite differences, finite elements and finite volumes. While for finite difference schemes applied to one-dimensional problems a rather complete convergence theory for arbitrary meshes is developed, the theory is more fragmentary for other methods and problems and still requires the restriction to certain classes of meshes

    A uniformly accurate finite elements method for singular perturbation problems

    Get PDF
    We consider piecewise polynomial finite elements method for a singular perturbation problem. The finite elements method of Griffiths for a problem with non-constant coefficients was adapted by introducing piecewise polynomial approximation. We generate the tridiagonal difference schemes which are second order accurate in uniform norm

    Higher order numerical methods for singular perturbation problems

    Get PDF
    Philosophiae Doctor - PhDIn recent years, there has been a great interest towards the higher order numerical methods for singularly perturbed problems. As compared to their lower order counterparts, they provide better accuracy with fewer mesh points. Construction and/or implementation of direct higher order methods is usually very complicated. Thus a natural choice is to use some convergence acceleration techniques, e.g., Richardson extrapolation, defect correction, etc. In this thesis, we will consider various classes of problems described by singularly perturbed ordinary and partial differential equations. For these problems, we design some novel numerical methods and attempt to increase their accuracy as well as the order of convergence. We also do the same for existing numerical methods in some instances. We find that, even though the Richardson extrapolation technique always improves the accuracy, it does not perform equally well when applied to different methods for certain classes of problems. Moreover, while in some cases it improves the order of convergence, in other cases it does not. These issues are discussed in this thesis for linear and nonlinear singularly perturbed ODEs as well as PDEs. Extrapolation techniques are analyzed thoroughly in all the cases, whereas the limitations of the defect correction approach for certain problems is indicated at the end of the thesis.South Afric

    On the design and implementation of a hybrid numerical method for singularly perturbed two-point boundary value problems

    Get PDF
    >Magister Scientiae - MScWith the development of technology seen in the last few decades, numerous solvers have been developed to provide adequate solutions to the problems that model different aspects of science and engineering. Quite often, these solvers are tailor-made for specific classes of problems. Therefore, more of such must be developed to accompany the growing need for mathematical models that help in the understanding of the contemporary world. This thesis treats two point boundary value singularly perturbed problems. The solution to this type of problem undergoes steep changes in narrow regions (called boundary or internal layer regions) thus rendering the classical numerical procedures inappropriate. To this end, robust numerical methods such as finite difference methods, in particular fitted mesh and fitted operator methods have extensively been used. While the former consists of transforming the continuous problem into a discrete one on a non-uniform mesh, the latter involves a special discretisation of the problem on a uniform mesh and are known to be more accurate. Both classes of methods are suitably designed to accommodate the rapid change(s) in the solution. Quite often, finite difference methods on piece-wise uniform meshes (of Shishkin-type) are adopted. However, methods based on such non-uniform meshes, though layer-resolving, are not easily extendable to higher dimensions. This work aims at investigating the possibility of capitalising on the advantages of both fitted mesh and fitted operator methods. Theoretical results are confirmed by extensive numerical simulations
    corecore