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Turning points occur in many circumstances in fluid mechanics. When the viscosity
is small, very complex phenomena can occur near turning points, which are not yet
well understood. A model problem, corresponding to a linear convection-diffusion
equation �e.g., suitable linearization of the Navier-Stokes or Bénard convection
equations� is considered. Our analysis shows the diversity and complexity of be-
haviors and boundary or interior layers which already appear for our equations
simpler than the Navier-Stokes or Bénard convection equations. Of course the
diversity and complexity of these structures will have to be taken into consideration
for the study of the nonlinear problems. In our case, at this stage, the full theoretical
�asymptotic� analysis is provided. This study is totally new to the best of our
knowledge. Numerical treatment and more complex problems will be considered
elsewhere. © 2007 American Institute of Physics. �DOI: 10.1063/1.2347899�

I. INTRODUCTION

Important work has been done in the area of singular perturbations, such as Eckhaus �1972�;
Lions �1973�; O’Malley �1991�; �1970�; Vishik and Lyusternik �1957�, to the point that one may
have the impression that the subject has been exhausted. This idea is of course incorrect and many
difficult problems still need to be addressed including parabolic boundary layers, corners, turning
points, numerical approximation, not mentioning one of the most outstanding problems of fluid
mechanics, namely the behavior of viscous fluids at small viscosity, in relation with turbulence.
Recent works in these areas include the following: Shih and Kellogg �1987�; Jung and Temam
�2005a, b� for parabolic boundary layers and Han and Kellogg �1990� and Kellogg and Stynes
�2005� for corners; Stynes �2005� is a reference and review article about the difficult problems in
numerical approximations. Concerning the convergence of the solutions of the Navier-Stokes
equations to those of the Euler equations, see some recent progress in the noncharacteristic case
�permeable boundary� in Temam and Wang �2002� and Hamouda and Temam �2006�. This is
based on the remark implicitly made in Temam and Wang �2002� and explicitly in Temam and
Wang �2000� and Hamouda and Temam �2006� that the Prandtl equation for such flows is simple
�linear and time independent�; see also Xin and Yanagisawa �1999�; Grenier and Gues �1998�; and
Grenier �2004� for the linearized compressible Navier-Stokes equations.

The present article is devoted to turning points. Turning points are a difficult problem in
singular perturbation theory for which relatively few results are available. Wasow’s �1985� entire
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book is devoted to this difficult problem for the linear case; see also Smith �1985� and Desanti
�1987a, b� for nonlinear problems. Turning points are an essential feature of turbulent boundary
layers and occur at the point�s� where the turbulent boundary layer separates since the tangential
velocity vanishes and changes sign at such points �see Batchelor �1988�; Lamb �1932� and Fig. 1;
see also recent results of topological nature in Ma and Wang �2005��. Hence among the numerous
connections of this article to fluid mechanics one can mention that Eq. �1.1� that we consider can
be seen as a suitable linearization of the two-dimensional stationary Navier-Stokes equations for
either component of the velocity for a flow as described in Fig. 1 or the linearization of the heat
equation for a Bénard convection problem. The linearization procedure is classically used in the
study of stability of laminar fluid flows where it leads for instance to the celebrated Orr-
Sommerfeld equation �see, e.g., Langer �1957�; Reid �1974a, b�; Drazin �2002�; and Drazin and
Reid �2004�.

The Orr-Sommerfeld equation appears in the study of the stability of a stationary solution for
a flow with velocity U in the direction Ox, and U can be at most a quadratic function of the
variable z �see Drazin �2002�, p. 156, Sec. 8.5�. To study the stability of a flow of the type depicted
in Fig. 1 �which we recall is a common situation for turbulent flows�, we would start from a
background flow more complex than for the Orr-Sommerfeld equation; either a more complex
stationary solution, or a time-dependent one. Hence, from the point of view of fluid mechanics,
this article is a very small step in the study of flows more complex than the plane parallel flows
considered in the context of the Orr-Sommerfeld equations. And beside its theoretical component,
this article gives some qualitative �analytic� indications on the structure of such flows.

Other motivations for studying turning points can be found in the books of Smith �1985� and
Wasow �1985�, in particular the study of the propagation of light in a nonhomogeneous medium as
an application of Maxwell’s equations, and some nonlinear differential equations corresponding to
simplified models of turbulent boundary layers; see also the double-gyre problem in geophysical
fluid mechanics in, e.g., Simonnet et al. �2003�.

In this article we consider a singularly perturbed problem which has a single turning point,
that is

L�u
�
ª − �2uxx

� − bux
� = f in � = �− 1,1� , �1.1a�

u��− 1� = �, u��1� = � , �1.1b�

where 0���1, b=b�x�, f = f�x� are smooth on �−1,1�, �, � are constants, and

b � 0 for x � 0, b = 0 for x = 0, b � 0 for x � 0, �1.2a�

bx�x� � 	 � 0, 	 constant, ∀ x � �− 1,1� . �1.2b�

Without loss of generality, we may set 	=1, and we also note from �1.2� that b has a simple zero
at x=0.

FIG. 1. Separation of a turbulent boundary layer; S: the point of separation �after Fig. 39 from Van Dyke �1998��.
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We shall consider the Sobolev spaces Hm���, m integer, equipped with the semi-norm,
�u�Hm = �����=m���D�u�2dx dy�1/2, and the norm, �u�Hm = �� j=0

m �u�Hj
2 �1/2. We define the corresponding

inner product in the space Hm���: ��u ,v��Hm���=����
m�D�u ,D�v�, where �u ,v�=��uv dx dy. In
particular we use the Sobolev space H0

1���, which is the closure in the space H1��� of C�

functions compactly supported in �.
In the text � �� j, � jm depending on j or m, etc.� and c denote generic constants which are

independent of � and that may be different at different occurrences.
We then consider the weak formulation of �1.1� as follows: To find u=v+��1−x� /2+��1

+x� /2 with v�H0
1��� such that

a��v,w� = F�w�, ∀ w � H0
1��� , �1.3a�

where

a��v,w� = �2��v,w�� − �bvx,w� , �1.3b�

F�w� = � f̃ ,w�, f̃ = f +
� − �

2
b; �1.3c�

thanks to the Poincaré inequality, the space H0
1��� is equipped with the inner product ��·, ·��, and

the norm �·�:

��v,w�� = 	
−1

1

vxwxdx, �v� = �v�H1 = ��v,v��1/2. �1.4�

It is then easy to verify the coercivity of a�, because for all v�H0
1���,

a��v,v� = �2�v�2 + 	
−1

1 
bx

2
�v2dx � �2�v�2. �1.5�

We also easily verify the continuity of the bilinear form a� on H0
1���
H0

1��� and the continuity
of the linear form F on H0

1��� and thus, by the Lax-Milgram theorem, there exists a unique
function v�H0

1��� satisfying Eq. �1.3�, hence u=u� satisfying �1.1�.
Lemma 1.1: The following regularity results and a priori estimates of the solutions u=u� of

Eq. (1.1) with �=�=0 hold: if f �Hm−2���, m�2, then u�Hm��� and

�u�L2��� 
 ��f �L2���, �u�H1��� 
 ��−1�f �L2���, �1.6a�

�u�Hm��� 
 �m�−2m+1�f �L2��� + �m�
l=2

m−1

�−2�l−1��f �Hm−l���. �1.6b�

Proof: Multiplying Eq. �1.1� by u and then integrating over �−1,1� we find that

�2�u�H1
2 + 1

2 �u�L2
2


 �by �1.5�� 
 a��u,u� = �f ,u� 
 �f �L2
2 + 1

4 �u�L2
2 ; �1.7�

the H2-estimate is easily derived from �1.1a�. Differentiating �1.1a� we inductively find the higher
estimates Hm, m�3. �

We notice that the characteristics are x��t�=−b�x�t�� and hence x��0 for x� �−1,0�, x��0
for x� �0,1�. We thus observe that the characteristics converge to the point x=0. If we are away
from x=0, the solution u� behaves like u0 �when �=0�. Various complicated behaviors may occur
near x=0, in particular if certain compatibility conditions between b and f are not satisfied �see
Desanti �1987a, b�; Kevorkian and Cole �1996�; O’Malley �1991, 1970�; Smith �1985�; and Wa-
sow �1985��. For example, if b=x, f =1, then −xux

0=1 �thus u0=−ln��x�� for �x��0�. Here we

065301-3 Asymptotic analysis of turning point problems J. Math. Phys. 48, 065301 �2007�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

114.70.7.203 On: Tue, 11 Nov 2014 07:31:05



observe the logarithmic singularities at x=0. Notice that u0 only belongs to L2���. These singu-
larities arise due to the inconsistency between b and f �note that if �ux

0�0�� were bounded,
−b�0�ux

0�0�=0�1= f�0��. These issues are addressed in Sec. III.
In Sec. II we start with the case f =0, �, � arbitrary. Since f =0, we easily see that u0 is

constant where x�0. Because of the boundary conditions, u0=� in x�0 and u0=� in x�0. The
discrepancies �differences� between � and � lead to the interior layers � j below. Section II thus
deals with the homogeneous problems with inhomogeneous boundary conditions.

In Secs. III and IV we discuss the inhomogeneous problems with homogeneous boundary
conditions. In Sec. III, assuming enough compatibility conditions between b and f at x=0 �see
�3.1��, we will observe discrepancies between ul

0�0−� and ur
0�0+� �more generally, between the

outer solutions ul
j�0−� and ur

j�0+�, j�0, on the left and right of zero, see �2.1�� which result in the
interior layers �r

j, �l
j, and � j below.

We will also consider the case f arbitrary, not necessarily satisfying the compatibility condi-

tions, by decomposing f into f̂ and Bk where f̂ = f −�k�kBk, the Bk’s are defined in �4.1�, and the

�k’s are chosen so that f̂ satisfies the compatibility conditions which appeared in Sec. III. We thus
need only to investigate the case f =Bk which we do in Sec. IV. We will observe the interior layers

�̃r
j, �̃l

j, and �̃ j in the following and they display very sharp transitions due to the singularities of the
outer solutions uj at x=0, e.g., u0=−ln��x��.

II. ASYMPTOTIC ANALYSIS I: f=0, �, � ARBITRARY

A. Outer expansions

We start with the formal expansions u��� j=0
� � jul

j in x�0 and u��� j=0
� � jur

j in x�0. Substi-
tuting these expansions in Eq. �1.1a� we find that, by identification at each power of �,

O�1�:− bulx
0 = f in �− 1,0�, − burx

0 = f in �0,1� , �2.1a�

O���:− bulx
1 = 0 in �− 1,0�, − burx

1 = 0 in �0,1� , �2.1b�

O�� j�:− bulx
j = ulxx

j−2 in �− 1,0� − burx
j = urxx

j−2 in �0,1� for j � 2. �2.1c�

In this section since we consider the problem �1.1� with f =0, the outer solutions are very
simple, namely ul

0=�, ur
0=� and ul

j =ur
j =0 for j�1. Here we imposed the boundary conditions:

ul
0�−1�=�, ur

0�1�=� and ul
j�−1�=ur

j�1�=0, j�1, which will be justified in the following �by
Theorems 2.1, 3.1, 4.1, and 4.2�.

B. Interior layers �j

To resolve the discrepancies between ul
0 and ur

0 at x=0 �namely � and � if these numbers are
different�, we introduce the so-called ordinary interior layers which are defined by the inner
expansions u��� j=0

� � j� j with a stretched variable x̄=x /�, � j =� j�x̄�, x̄� �−� ,�� as follows. Using
the formal Taylor expansion for b=b�x� at x=0 we obtain the asymptotic expansion for b:

b�x� = �
j=1

�

bjx
j = �

j=1

�

bj�
jx̄ j; �2.2�

note that b0=b�0�=0 and b1=bx�0��1 from �1.2�. Substituting �2.2� and the inner expansions
�� j=0

� � j� j� for b and u�, respectively, in Eq. �1.1a�, we then obtain �with b0=0� the following
formal expansion:

�
j=0

� 
− � j�x̄x̄
j − � j��

k=0

j

bj−k+1x̄j−k+1�x̄
k�� = 0. �2.3�

065301-4 C.-Y. Jung and R. Temam J. Math. Phys. 48, 065301 �2007�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

114.70.7.203 On: Tue, 11 Nov 2014 07:31:05



By identification at each power of �, we find

O�1�:− �x̄x̄
0 − b1x̄�x̄

0 = 0, �2.4a�

O���:− �x̄x̄
1 − b1x̄�x̄

1 = b2x̄2�x̄
0 �2.4b�

O�� j�:− �x̄x̄
j − b1x̄�x̄

j = �
k=0

j−1

bj−k+1x̄j−k+1�x̄
k. �2.4c�

We impose the boundary conditions:1 �0�x=−1�=�, �0�x=1�=�, and � j�x=−1�=� j�x=1�=0, j
�1. But for the purpose of the analysis to follow it is convenient to consider the approximate form

of � j, namely �̄ j satisfying Eq. �2.4� on all of R �for the variable x̄� with the following boundary
conditions:

�̄0 → � as x̄ → − �, �̄0 → � as x̄ → � , �2.5a�

�̄ j → 0 as x̄ → ± �, j � 1. �2.5b�

We show in the following that � j and �̄ j differ by an exponentially small term �denoted e.s.t�.
The reason for considering the �̄ j is that we are able to obtain the explicit solutions for �̄ j: in
particular,

�̄0 = c0
−1��	

x̄

�

exp
−
b1s2

2
�ds + �	

−�

x̄

exp
−
b1s2

2
�ds� , �2.6a�

�̄1 = �� − ��b23−1c0
−1	

−�

x̄

s3 exp
−
b1s2

2
�ds , �2.6b�

where c0=�−�
� exp�−b1s2 /2�ds=�2� /b1; see Figs. 2�a� and 2�d�.

We claim that

�̄x̄
j = P3j�x̄�exp
−

b1x̄2

2
�, ∀ j � 0, �2.7�

where Ps�x̄� denotes a polynomial in x̄ of degree s with coefficients independent of � but its
expression may be different at different occurrences. Indeed, �2.7� for j=0 follows from �2.6a�;
then we assume that �2.7� is valid for 0
 j
n. For j=n+1, the claim �2.7� follows observing that

from �2.4c�, � j being replaced by �̄ j, we can write

− 
�̄x̄
n+1 exp
b1x̄2

2
��

x̄
= 
�

k=0

n

bn−k+2x̄n−k+2�̄x̄
k�exp
b1x̄2

2
� = �

k=0

n

bn−k+2x̄n−k+2P3k�x̄� = P3n+2�x̄� ,

�2.8�

and hence with a suitable constant Cn+1,

1These boundary conditions would be different if �, � would contain lower order terms, e.g., � j→� j as x̄→� with say
�=�0+��1+�2�2+¯ .
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�̄x̄
n+1 = �P3�n+1��x̄� + Cn+1�exp
−

b1x̄2

2
� . �2.9�

We then have to show that the coefficients in the polynomial P3�n+1��x̄�+Cn+1 corresponding to

�̄x̄
n+1 are independent of �. We first notice that by the induction assumption, the coefficients of

P3n+2�x̄� in �2.8� are independent of �, and so are those of P3�n+1��x̄� in �2.9�. It thus suffices to
show that Cn+1 is independent of �. Indeed, we find that for a constant Dn+1, n�0,

�̄n+1 = 	
−�

x̄

�̄x̄
n+1�s�ds + Dn+1 = 	

−�

x̄

P3�n+1��s�exp
−
b1s2

2
�ds + Cn+1	

−�

x̄

exp
−
b1s2

2
�ds + Dn+1.

�2.10�

By the boundary conditions �2.5b�, we first notice that Dn+1=0 and

Cn+1c0 = − 	
−�

�

P3�n+1��s�exp
−
b1s2

2
�ds , �2.11�

which is independent of � because so are the coefficients of P3�n+1��s� in �2.10� and �2.11�.
We now show that the � j − �̄ j, j�0, are exponentially small terms, more precisely,

FIG. 2. The interior layers, �0, �r
0, �̃r

0, for b�x�=x, �=0.01; �a� f =0, �=−1, �=1, �0= �̄0+e.s.t. with �̄0

=erf�70.710 678 10�x�; �b� f =xex, �=�=0, ul
0=−ex+e−1, �r

0=−0.012 533 141 37�erf�70.710 678 10�x�−0.632 120 558 8,

ul
0 and �r

0 are matched at x=0 with C1-smoothness; �c� f =1, �=�=0, ul
0=−ln�−x�, �̃r

0

=2.066 365 677�erf�70.710 678 10�x�+6.015 856 320, ul
0 and �̃r

0 are matched at x=−�=−0.01 with C1-smoothness; �d�,
�e�, �f� are, respectively, zooming of �a�, �b�, �c� near x=0, see the matching points x=0, −0.01 marked “x,” respectively,
in �e�, �f�.

065301-6 C.-Y. Jung and R. Temam J. Math. Phys. 48, 065301 �2007�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

114.70.7.203 On: Tue, 11 Nov 2014 07:31:05



�� j − �̄ j�Hm��� 
 � jme−c/�, ∀ j, m � 0. �2.12�

To see this, from �2.7� we first notice that �̄ j�x̄�=�−�
x̄ P3j�s�e−b1s2/2ds+ �̄ j�−��, or

−�x̄
�P3j�s�e−b1s2/2ds+ �̄ j���, where �̄ j�±�� is given in �2.5�. Since �̄ j�−��=� j�x=−1�, �̄ j���=� j�x

=1�, we find that

��� j − �̄ j��x = − 1�� = ��̄ j�− �� − �̄ j�− 1/��� 
 	
−�

−1/�

�P3j�s��e−b1s2/2ds


 �by �2.19a�, �2.19b�, see below� 
 � je
−c/�, �2.13�

and similarly ��� j − �̄ j��x=1��
� je
−c/�. Setting then 	 j =	 j�x�=� j − �̄ j − ��� j − �̄ j��x=−1���1−x� /2

− ��� j − �̄ j��x=1���1+x� /2, it suffices to show that �	 j�Hm���
� jme−c/�. To show this we write with

Eq. �2.4� for � j and �̄ j:

− �2	xx
j − b1x	x

j = �
k=0

j−1

�−�j−k�bj−k+1xj−k+1	x
k + 	̃ j ,

�2.14�
	 j�− 1� = 	 j�1� = 0,

where 	̃ j =−b1x /2��� j − �̄ j��x=−1�− �� j − �̄ j��x=1��, ∀j, m�0; note that �	̃ j�Hm���
� jme−c/�. By
Lemma 1.1, we first find �	0�Hm���
�mP��−1�e−c/�, P��−1� a polynomial in �−1, and again recur-
sively we also find that �	 j�Hm���
� jmP��−1�e−c/�, ∀j�1. This implies that �	 j�Hm���
� jme−c/�2��,
∀j�0.

The following pointwise and norm estimates can then be derived.
Lemma 2.1: There exist positive constants � jm and c such that the following pointwise esti-

mate holds:2

�dm� j

dxm � 
 � jm�1 for j = 0 and m = 0

�−m exp
− c
�x�
�
� for j � 1 or m � 1. � �2.15�

Furthermore, for �� �0,1�,

�� j�Hm��−1,−�����,1�� 
 � jm�1 for j = 0 and m = 0

�−m+1/2 exp
− c
�

�
� for j � 1 or m � 1, � �2.16�

and, for m�0,

�� j�Hm�−1,1� 
 � jm�1 + �−m+1/2� . �2.17�

Proof: Differentiating �2.7� in x̄, we find that for m�1,

dm�̄ j

dx̄m = P3j+m−1�x̄�exp
−
b1x̄2

2
� . �2.18�

We thus derive �2.15� for �̄ j, m�1, j�0 from the fact that for every c�0,

exp
−
b1x̄2

2
� 
 ��c�exp�− 2c�x̄�� , �2.19a�

2c�0 is arbitrary but kjm=kjm�c�. In what follows, throughout this paper, the c is understood in this manner.
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�P3j+m−1�x̄�� 
 � jm�c�exp�c�x̄�� , �2.19b�

so that, for any c�0,

� dm�̄ j

dx̄m �x̄�� 
 � jm�c�exp�− c�x̄��, ∀ x̄ � �− �,�� . �2.19c�

For m=0, j=0, �2.15� for �̄0 is obvious from �2.6a�. For m=0, j�1, using the estimates �2.19�
�2.15� for �̄ j directly follows from �2.10� and �2.11�. Then thanks to �2.12�, �2.15� follows.

The norm estimates �2.16� and �2.17� are directly deduced from �2.15�. �

Remark 2.1: It follows from Lemma 2.1 that the interior layers � j, j�1, and their derivatives
are exponentially small terms (e.s.t) in the regions �x�����, 0���1, � fixed.

C. Asymptotic errors

Let

w�n = u� − ��n, �2.20a�

where

��n = �
j=0

n

� j� j . �2.20b�

Multiplying �2.4c� by � j and summing over j=0, . . . ,n, we find that

L���n = − R1
n, �2.21a�

where

R1
n = �

j=0

n

� j�x
jRj,n�b� , �2.21b�

with

Rj,n�b� = b�x� − �
k=1

n+1−j

bkx
k; �2.21c�

here we used the fact that, by permuting the summations:

�
j=0

n 
� j�
k=0

j

bj−k+1x̄j−k+1�x̄
k� = �

j=0

n

�
k=0

j

bj−k+1xj−k+1�k�x
k = �

j=0

n

� j�x
j
 �

k=1

n+1−j

bkx
k� . �2.21d�

We now estimate the L2- norm of R1
n as follows. We first notice that, by Taylor expansion,

�Rj,n�b�� = �b�x� − �
k=1

n+1−j

bkx
k� 
 �n�x�n+2−j 
 �n�n+2−j�x̄�n+2−j . �2.22�

From �2.15� and �2.21b� we thus find that

�R1
n� 
 �n�n+2�

j=0

n

�x̄�n+2−j��x
j � 
 �n�n+1 exp
−

c�x�
2�

� �2.23a�

and hence

�R1
n�L2 
 �n�n+3/2. �2.23b�

065301-8 C.-Y. Jung and R. Temam J. Math. Phys. 48, 065301 �2007�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

114.70.7.203 On: Tue, 11 Nov 2014 07:31:05



Subtracting �2.21a� from �1.1a� with f =0, we find that

L�w�n = R1
n + e.s.t. in � , �2.24a�

w�n�− 1� = w�n�1� = 0. �2.24b�

Applying Lemma 1.1 to Eq. �2.24� with u=w�n and using �2.23b� we thus obtain the following
theorem.

Theorem 2.1: Let u� be the solution of (1.1) with f =0. Then for m, n�0, there exists a
constant �n�0 independent of � such that

�u� − ��n�Hm��� 
 �n
�n+3/2 for m = 0

�−2m+n+5/2 for m = 1,2,
� �2.25�

where ��n is as in (2.20b).
Remark 2.2: For n=0 we can write the left-hand side of �2.25� as �u�−u0− ��0−u0��Hm���,

where the corrector �0−u0 vanishes at x=−1 and 1, and is discontinuous at x=0. Now we notice
that from Lemma 2.1

��0 − �� 
 	
x̄

�

��x̄
0�s��ds 
 � exp�− cx̄� for x̄ � 0, �2.26�

and similarly, ��0−��
� exp�cx̄�, for x̄�0. Setting u0=� for x� �−1,0�, u0=� for x� �0,1�, we
then find that from Theorem 2.1

�u� − u0�L2�−1,1� 
 �u� − u0 − ��0 − u0��L2�−1,1� + ���0 − ��L2�−1,0� + ���0 − ��L2�0,1� 
 ��3/2 + ��1/2


 ��1/2. �2.27�

Hence we write: u�=u0+O��1/2� in L2���.

III. ASYMPTOTIC ANALYSIS II: f, b COMPATIBLE, �=�=0

In this section, we consider the problem �1.1� with �=�=0 and f arbitrary satisfying the
compatibility conditions �3.1� to follow. If f �0, in particular if f�0��0, since b�0�=0, the limit
problem −bux

0= f has an inconsistency at x=0. That is its solution cannot be smooth �C1�. To avoid
the inconsistency between b and f , in this section we assume the following compatibility condi-
tions:

di f

dxi �0� = 0, i = 0,1, . . . ,N; �3.1�

the integer N�0 will be specified later on. If �3.1� does not hold, we will see that the solution u�

of �1.1� possesses logarithmic singularities at x=0 as already indicated in Sec. I. The case where
the compatibility conditions �3.1� are not satisfied is addressed in Sec. IV.

We first construct the outer expansions ul
j, ur

j as in �2.1�. Here �also in Sec. IV� we impose the
following boundary conditions: for j�0,

ul
j�− 1� = ur

j�1� = 0, �3.2�

which will be justified in the following �by Theorems 3.1, 4.1, and 4.2�. We then notice with �2.1�
that ul

j =ur
j =0 for all odd j�1. Furthermore, we are able to obtain the following explicit expres-

sions:
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ul
0 = − 	

−1

x

b�s�−1f�s�ds, ur
0 = 	

x

1

b�s�−1f�s�ds , �3.3a�

and for all j=2k, k�1,

ul
2k = − 	

−1

x

b�s�−1uxx
2�k−1��s�ds, ur

2k = 	
x

1

b�s�−1uxx
2�k−1��s�ds . �3.3b�

Thanks to the compatibility conditions �3.1�, the values of ul
j�0−� and ur

j�0+�, of ulx
j �0−� and urx

j �0+�
or of higher order derivatives, are finite if we take N sufficiently large. For example, to guarantee
that �ulx

2 �0−��, �urx
2 �0+����, N=2 is required. Indeed, ulx

2 �0−�=−b�0−�−1uxx
0 �0−� and by the

L’Hospital’s rule, we find that ulxx
0 �0−�=0 and �ulxxx

0 �0−���� are needed �we then find ulx
2 �0−�

=−bx�0�−1ulxxx
0 �0−��. Assuming that condition �3.1� with N=2 holds, by some elementary calcula-

tions, we find

ulxx
0 �0−� = −

fxx�0�
2bx�0�

= 0, �3.4a�

�ulxxx
0 �0−�� = � fxx�0�bxx�0�

2bx�0�2 −
fxxx�0�
3bx�0�

� � � , �3.4b�

and the arguments are similar for urx
2 �0+�. In the following lemma, we precisely specify N so that

�dmul
2k /dxm�0−��, �dmur

2k /dxm�0+��
�km and thus, in the following, �3.20� for m=1, and �3.36c� for
m=2 make sense.

Lemma 3.1: Let m�1 and k�0. Assume that the compatibility conditions (3.1) hold with
N=m+2k−1. Then there exists a positive constant �km such that

� dmul
2k

dxm �0−��, � dmur
2k

dxm �0+�� 
 �km. �3.5�

Proof: Set ulxx
−2 = f for convenience. We then claim that for m�1, x� �−1,0�,

� dmul
2k

dxm �x�� 
 �m�
r=0

m−1

�b�r−m� dr+2ul
2�k−1�

dxr+2 �x�� . �3.6�

Indeed, we prove �3.6� using an induction argument on m. For m=1, we easily derive �3.6� from
�2.1c�. Assume that �3.6� holds for m
s. For m=s+1, differentiating �2.1c� s times in x we find
that

− b
ds+1ul

2k

dxs+1 = �
r=1

s 
s

r
�drb

dxr

ds−r+1ul
2k

dxs−r+1 +
ds+2ul

2�k−1�

dxs+2 . �3.7�

The claim �3.6� follows observing that

� ds+1ul
2k

dxs+1 � 
 �s�b�−1
�
r=1

s � ds−r+1ul
2k

dxs−r+1 � + � ds+2ul
2�k−1�

dxs+2 ��

 �s�b�−1
�

r=1

s 
�
l=0

s−r

�b�l−�s−r+1�� dl+2ul
2�k−1�

dxl+2 �� + � ds+2ul
2�k−1�

dxs+2 ��

 �s�b�−1
�

l=0

s

�b�l−s� dl+2ul
2�k−1�

dxl+2 �� . �3.8�

We next claim that
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dnul
2k

dxn �0−� = 0 �3.9a�

provided that

di f

dxi �0� = 0, 0 
 i 
 n + 2k . �3.9b�

To prove this claim, thanks to the L’Hospital rule, from �3.6� with m=n we easily find that if

diul
2�k−1�

dxi �0−� = 0 for 2 
 i 
 n + 2, �3.10�

then �3.9a� follows. Similarly, �3.10� follows if

diul
2�k−2�

dxi �0−� = 0 for 2 
 i 
 n + 4. �3.11�

We then recursively find that �3.10� �and thus �3.9a�� follows if

di−2f

dxi−2 �0−� =
diul

−2

dxi �0−� = 0 for 2 
 i 
 n + 2�k + 1�; �3.12�

this is exactly �3.9b�.
From �3.6� we now derive the following recursive relation: to guarantee that

� dmul
2k

dxm �0−�� 
 �km, �3.13a�

we require that

dr+s+2ul
2�k−1�

dxr+s+2 �0−� = 0 for 0 
 s 
 m − r − 1 �3.13b�

and

� dm+2ul
2�k−1�

dxm+2 �0−�� 
 �k−1,m+2. �3.13c�

Due to �3.9�, the compatibility conditions �3.1� with 0
 i
m+2k−1 imply �3.13b�. The
lemma follows from the recursive relation �3.13� and the fact that ulxx

−2 = f , f smooth. The estimates
for ur

2k can be similarly deduced. �

Remark 3.1: We easily find that �3.5� in Lemma 3.1 can be replaced by

�dmul
j

dxm �0−��, �dmur
j

dxm �0+�� 
 � jm for all 0 
 j 
 2k + 1; �3.14�

note that ul
j =ur

j =0 for j odd.
Remark 3.2: In general, when the compatibility conditions �3.1� are not necessarily satisfied,

we have the following regularity results:

�ul
0�L2�−1,0� 
 ��f �L��−1,0�, �3.15a�

�ul
j�L2�−1,0� 
 � j�ul

j−2�W2,��−1,0� for all even j � 2. �3.15b�

Indeed, from condition �1.2� we find that
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x

b�x�
→

1

bx�0�
as x → 0, �3.16�

and hence

� x

b�x�
� 
 �, ∀ x � �− 1,1� . �3.17�

We thus infer from the explicit expression �3.3a� that

�ul
0�x�� 
 �f �L��−1,0��	

−1

x s

b�s�
ds

s � 
 − � ln�− x��f �L��−1,0�, ∀ x � �− 1,0� , �3.18�

and hence

�ul
0�L2�−1,0� 
 ��ln��x���L2�f �L� 
 ��f �L��−1,0�; �3.19�

the estimates �3.15b� for uj, j�2 even, are similarly obtained. The regularity properties for ur
j can

be similarly deduced.

A. Interior layers �r
j ,�l

j ,�j

Assuming enough compatibility conditions, we can guarantee, as in Lemma 3.1, that �ul
j�0−��,

�ur
j�0+��, �ulx

j �0−��, �urx
j �0+��
� j. In general, ul

j�0−��ur
j�0+�. To resolve these discrepancies at x

=0, using the stretched variable x̄=x /�, we introduce the functions �l
j�x̄�, and �r

j�x̄� which are
defined as the solutions of the same equations �2.4� respectively on �−� ,0�, and �0,�� with the
following boundary conditions:3

�r
j�x̄� = ul

j�0−�, �rx̄
j �x̄� = ��rx

j = �ulx
j �0−� at x̄ = 0, �3.20a�

�l
j�x̄� = ur

j�0+�, �lx̄
j �x̄� = ��lx

j = �urx
j �0+� at x̄ = 0, �3.20b�

which allow us to determine the �l
j ,�r

j explicitly. Notice that ur
j =ul

j =0 for j odd. In particular, for
j=0,1, we find

�r
0 = �ulx

0 �0−�	
0

x̄

exp
−
b1s2

2
�ds + ul

0�0−� , �3.21a�

�r
1 = − �ulx

0 �0−�b23−1	
0

x̄

s3 exp
−
b1s2

2
�ds . �3.21b�

Here we note that as x̄→�,

�r
0 → �ulx

0 �0−�cr,0 + ul
0�0−� ¬ cr,�

0 ��� , �3.22a�

�r
1 → − �ulx

0 �0−�b23−1cr,1 ¬ cr,�
1 ��� , �3.22b�

where cr,0=�0
� exp�−b1s2 /2�ds, cr,1=�0

�s3 exp�−b1s2 /2�ds.
We denote by ��� the function on �−1,1� equal to �the restriction of� � on �−1,0� and to

�the restriction of� � on �0,1� and consider the functions ul
j ��r

j and �l
j �ur

j. Note that due to �3.20�,
these functions belong to C1��−1,1�� and to H2�−1,1�; see Figs. 2�b� and 2�e�.

3These boundary conditions provide smooth �i.e., C1� matching of ul
j�x� with �r

j�x /�� �respectively, of ur
j�x� with �l

j�x /���.
Note that the interior layers �l

j ,�r
j are independent of the fact that f =0 �as in Sec. II� or not. When f �0, the outer solutions

ul
j ,ur

j only are affected.

065301-12 C.-Y. Jung and R. Temam J. Math. Phys. 48, 065301 �2007�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

114.70.7.203 On: Tue, 11 Nov 2014 07:31:05



We now estimate the interior layers �r
j ,�l

j. Assuming the compatibility conditions �3.1� with
N=2k, we infer from �3.14� that �ul

j�0−��, �ur
j�0+��, �ulx

j �0−��, �urx
j �0+��
� j for 0
 j
2k+1. We

derive a relation similar to �2.7� but we need to take into account the boundary conditions �3.20�.
More precisely, we claim that for x̄� �0,��,

�rx̄
j = �P3j�x̄�exp
−

b1x̄2

2
�, ∀ j � 0, �3.23�

where the P3j�x̄� are as in �2.7�.
For j=0, we easily deduce �3.23� from �3.21a�. Now suppose that �3.23� holds for j
n. For

j=n+1
2k+1, we find that as for �2.8�

− 
�rx̄
n+1 exp
b1x̄2

2
��

x̄
= �P3n+2�x̄� , �3.24�

and by the boundary conditions �3.20�, namely �rx̄
n+1�x̄=0�=�ulx

n+1�x=0−�, we find

�rx̄
n+1 = �P3�n+1��x̄�exp
−

b1x̄2

2
� . �3.25�

The following pointwise and norm estimates can be derived.
Lemma 3.2: Assume that the compatibility conditions (3.1) hold with N=2k, k�0. Then there

exist positive constants � jm and c such that for x� �0,1�, 0
 j
2k+1,

�dm�r
j

dxm � 
 � jm�1 for m = 0

�−m+1 exp
− c
x

�
� for m � 1. � �3.26�

Consequently, for �� �0,1�,

��r
j�Hm��,1� 
 � jm�1 for m = 0

�−m+3/2 exp
− c
�

�
� for m � 1, � �3.27�

and for m�0,

��r
j�Hm�0,1� 
 � jm�1 + �−m+3/2� . �3.28�

Furthermore, there exist constants cr,�
j ��� with �cr,�

j ����
� j such that for j�0,

�r
j�x̄� → cr,�

j ��� as x̄ → � . �3.29�

Proof: Thanks to �3.23� we proceed as in �2.18� �2.19� to derive �3.26� for m�1, 0
 j
2k
+1. The case m=0 follows observing that

��r
j� = �	

0

x̄

�rx̄
j �s�ds + ul

j�0−�� 
 � j�	
0

x̄

exp�− cs�ds + �ul
j�0−�� 
 � j . �3.30�

The norm estimates �3.27� and �3.28� easily follow from �3.26�.
To prove �3.29�, thanks to �3.30� we can extract a sequence pn→� and find an accumulation

point cr,�
j ��� �note ��r

j�x̄��
� j� such that �r
j�pn�→cr,�

j ���; �3.29� easily follows observing that

�r
j�x̄� − �r

j�pn� = 	
pn

x̄

�rx̄
j �s�ds , �3.31�

and, letting pn→�,
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��r
j�x̄� − cr,�

j ���� = �	
x̄

�

�rx̄
j �s�ds� 
 �� exp�− cx̄� . �3.32�

Remark 3.3: We can similarly perform the analysis for �l
j and derive the pointwise and norm

estimates as above. Here we denote by cl,�
j the limit of �l

j as x̄→−�.
By our constructions, we then notice that from �3.32� the functions gj

ª−�ul
j ��r

j�− ��l
j �ur

j�
attain the values −�l

j =−cl,�
j ���+e.s.t. at x=−1 and −�r

j =−cr,�
j ���+e.s.t. at x=1 �see �3.2� and

�3.32��. To remedy these discrepancies between gj and u� at the boundaries x=−1,1 �we recall that
u��−1�=u��1�=0�, we introduce interior layers � j similar to � j but we use different boundary
conditions: the � j =� j�x̄� satisfy �2.4� and

� j = − �l
j at x = − 1, � j = − �r

j at x = 1 for j � 0. �3.33�

As before we are able to obtain explicit solutions: we set

� j��,�� = �̄ j, j = 0,1, �3.34a�

where the �̄ j are as in �2.6�; then by �3.32� and some elementary calculations, we find:

�0 = �0�− cl,�
0 ���,− cr,�

0 ���� + e.s.t., �3.34b�

�1 = �1�− cl,�
0 ���,− cr,�

0 ���� + �0�− cl,�
1 ���,− cr,�

1 ���� + e.s.t. �3.34c�

Proceeding as in Lemma 2.1 we obtain for the � j the same estimates as �2.15�–�2.17� �but
“j=0 and m=0,” “j�1 or m�1,” respectively, being replaced by “m=0,” “m�1”�. Here we used

the fact that in �2.7�–�2.11� for �̄ j = �̄ j �approximate form of � j�,

Dn+1 = − cl,�
n+1���, Cn+1c0 = − cr,�

n+1��� + cl,�
n+1��� − 	

−�

�

P3�n+1��s�exp
−
b1s2

2
�ds

and �cr,�
j ����, �cl,�

j ����
� j.

B. Asymptotic errors

Let

w�n = u� − ��n − ��n − ��n, �3.35a�

where

��n = �
j=0

2n

� j�ul
j � �r

j�, ��n = �
j=0

2n

� j��l
j � ur

j�, ��n = �
j=0

2n

� j� j . �3.35b�

From the outer expansions �2.1� and the interior layers �r
j ,�l

j ,� j, after some elementary cal-
culations, we find that

L�w�n = R2
n + R3

n + R4
n + e.s.t. in � , �3.36a�

w�n�− 1� = w�n�1� = 0, �3.36b�

where

R2
n = �2n+2�ulxx

2n � urxx
2n �; note ul

2n−1 = ur
2n−1 = 0, �3.36c�
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R3
n = �

j=0

2n

� j��lx
j � �rx

j �Rj,2n�b�, R4
n = �

j=0

2n

� j�x
jRj,2n�b�; �3.36d�

the Rj,2n�b� are as in �2.21c�.
Notice that from �3.14� �ulxx

j �0−��, �urxx
j �0+��
� j, 0
 j
2n+1 if we take N=2n+1 in the

compatibility conditions �3.1�.
We then estimate the L2-norms of R2

n, R3
n, and R4

n as follows. We first easily find that

�R2
n�L2��� 
 �n�2n+2. �3.37�

Using �2.22� and the pointwise estimates �3.26�, we find as for �2.23�:

�R3
n� 
 �n�2n+2�

j=0

2n

�x̄�2n+2−j���rx
j ���0,1� + ��lx

j ���−1,0�� 
 �n�2n+2 exp
−
c�x�
2�

� , �3.38�

where �A�x� is the characteristic function of the set A, and

�R3
n�L2��� 
 ��2n+5/2, �R4

n�L2��� 
 ��2n+3/2. �3.39�

We thus obtain the following theorem. Here and after it is convenient to introduce a notation
�=��� ,m� meaning:

���,m� = �1 for m = 0

�−1 for m = 1

�−3 for m = 2.
� �3.40�

Theorem 3.1: Assume that the compatibility conditions (3.1) hold with N=2n+1. Let u� be
the solution of (1.1) with �=�=0. Then there exists a constant �n�0 independent of � such that
for m=0,1 ,2,

�u� − ��n − ��n − ��n�Hm��� 
 �n�2n+3/2���,m� , �3.41�

where ��n, ��n, and ��n are as in (3.35b) and � is as in (3.40).
Proof: From �3.37� and �3.39�, the right-hand side of �3.36a� is majorized by �n�2n+3/2 in the

L2-norm. The lemma follows applying Lemma 1.1 to Eq. �3.36� with u=w�n. �

IV. ASYMPTOTIC ANALYSIS III: f ,b NONCOMPATIBLE, �=�=0

We now want to remove the compatibility conditions �3.1�. For that purpose, we decompose

f into f̂ and Bj, as explained in the following, with

f̂ = f − �
k=0

N

�kBk�x� , �4.1a�

where

B0 = bx�x�, B1 = b�x� , �4.1b�

Bk+2 = b�x�	
0

x

Bk�s�ds, k � 0. �4.1c�

Note that since diBk /dxi�0�=0 for i�k and diBk /dxi�0��0 for i=k �recall b�0�=0 and bx�0��1�,
we can recursively find all the �k, k�0 so that the compatibility conditions �3.1� for f = f̂ holds for
0
 i
N �e.g., �0= f�0�bx�0�−1, �1= �fx�0�−�0bxx�0��bx�0�−1�, that is the first N+1 terms of the

Taylor series expansion of f̂ vanish. Hence, for f̂ , the asymptotic analysis of Sec. III applies, f
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being replaced by f̂ . We thus only have to consider the cases of f =Bk, k�0 which is now our task
in this section.

We consider throughout this section the case f =Bk�x�, k�0, �=�=0. As indicated before, the
compatibility conditions �3.1� are not satisfied in this case �at least for i�k; note that
di f /dxi�0�=diBk /dxi�0��0 for i=k� and the outer solutions ul

j, ur
j may display singularities at x

=0 which we now describe. But we will observe that only for f =Bk�x�, k=2J, J�0 integer, the
outer solutions are singular at x=0. For f =Bk�x�, k=2J+1, it turns out that the outer solutions are
bounded in the neighborhood of x=0 and this enables us to perform the same asymptotic analysis
as in Sec. III.

Hence let us first examine the simper case where f =Bk and k is odd. We claim that for f
=B2J+1�x� , ∀ j , ∀m�0,

�dmul
j

dxm �0−��, �dmur
j

dxm �0+�� 
 � jm. �4.2�

Indeed, since f =B2J+1, we can recursively perform the following calculations. For x� �−1,0�, and
d=0, . . . ,J:

ulx
0 = − f/b = − 	

0

x

B2J−1�s�ds , �4.3a�

ulx
2d = − ulxx

2d−2/b = �− 1�d+1	
0

x

B2J−1−2d�s�ds, d = 1, . . . ,J − 2, �4.3b�

ulx
2�J−1� = − ulxx

2�J−2�/b = �− 1�J	
0

x

B1�s�ds = �− 1�J	
0

x

b�s�ds , �4.3c�

ulx
2J = − ulxx

2�J−1�/b = �− 1�J+1, �4.3d�

and ulx
j =0 for all j�2J+2; recall that ul

j =0 for j odd. Hence, all of the right-hand sides of �4.3�
are smooth and thus our claim follows. The estimates for ur

j can be similarly deduced.
Thanks to �4.2�, we can perform for f =B2J+1 the same asymptotic analysis as we have done in

Sec. III. The asymptotic errors are thus similarly deduced leading to Theorem 4.1.
Theorem 4.1: Let u� be the solution of (1.1) with f =B2J+1, J�0, �=�=0. Then there exists

a constant �n�0 independent of � such that for all n�0, m=0,1 ,2,

�u� − ��n − ��n − ��n�Hm��� 
 �n�2n+3/2���,m� , �4.4�

where ��n, ��n, and ��n are as in (3.35b) and � is as in (3.40).
Remark 4.1: From Lemma 2.1 for the � j and Lemma 3.2 we find that

�� j�x̄� + �r
j�x̄�� 
 �� j − � j�x = 1�� + ��r

j − �r
j�x = 1�� 
 �	

x̄

�

�x̄
j�s�ds� + �	

x̄

�

�rx̄
j �s�ds�


 � j�1 + ��exp�− cx̄� for x̄ � 0. �4.5�

The estimates for �� j�x̄�+�l
j�x̄��, x̄�0, can be similarly deduced. In particular, we can conclude that

for the case f satisfying the compatibility conditions �3.1� with N=1 or for f =B2J+1 �not satisfying
the compatibility conditions �3.1��, thanks to �4.5�, Theorems 3.1 and 4.1, we have
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�u� − u0�L2�−1,1� 
 �u� − ul
0�L2�−1,0� + �u� − ur

0�L2�0,1� 
 ��u� − ul
0 � �r

0 − �l
0 � ur

0 − �0�L2�−1,1� + ��1/2


 ��1/2, �4.6�

and thus u�=u0+O��1/2� in L2��� where u0=ul
0�ur

0, ul
0 and ur

0 as in �3.3a�. As in Remark 2.2, we
can, for n=0, write the left-hand side of �4.4� as �u�−u0− ���0+��0+��0−u0��Hm���, where the
corrector ��0+��0+��0−u0 vanishes at x=−1 and 1, and is discontinuous at x=0.

We now analyze the more involved case where f =B2J. Before we proceed with the asymptotic
analysis, we need to measure the singularities of ul

j, ur
j near x=0 which are provided by the

following lemma.
Lemma 4.1: For j even �0, if f =B2J, J�0, the outer solutions uj =ul

j��−1,0�+ur
j��0,1� are

estimated as follows: there exists a positive constant � jm independent of x such that, for �x��0,

�dmuj

dxm �x�� 
 � jm�
1 for m � 0 and j 
 2�J − 1�
− ln��x�� for m = 0 and j = 2J

�x�−�j−2J� for m = 0 and j � 2�J + 1�
�x�−�j+m−2J� for m � 1 and j � 2J .

� �4.7�

Proof: We claim that for j even, j�2J ,m�1,

�dmuj

dxm �x�� 
 � jm�x�−�j+m−2J�. �4.8�

Indeed, let f =B0�x�=bx�x�, i.e., J=0. We then use two inductions on j and m. We first verify �4.8�
for j=0 as follows. For j=0, m=1, from the outer equation �2.1a�, we verify that

�ux
0� 
 �bx

b
� 
 � xbx

b
��1

x
� 


�

�x�
. �4.9�

We assume that �4.8� is valid for j=0, m
s. We then verify that �4.8� holds for j=0, m=s+1.
Differentiating �2.1a� s times in x, we find

− b
ds+1u0

dxs+1 = �
r=1

s 
s

r
�drb

dxr

ds−r+1u0

dxs−r+1 +
ds+1b

dxs+1 . �4.10�

Hence it is not hard to find that

�ds+1u0

dxs+1 � 
 �s�b�−1
�
r=1

s

�x�−�s−r+1� + 1� 
 �s�x�−�s+1�. �4.11�

We thus verified �4.8� for j=0, m�1 when J=0. We now assume for J=0 that for all even j

2n, m�1, the claim �4.8� is valid. We then verify the case j=2�n+1� as follows. From the outer
equation �2.1c� we find that the case j=2�n+1�, m=1 is valid observing that

�du2�n+1�

dx
� 
 �b�−1�d2u2n

dx2 � 
 �n�b�−1�x�−2�n+1� 
 �n�x�−2�n+1�−1. �4.12�

Assume that �4.8� is valid for j=2�n+1�, m
s. For j=2�n+1�, m=s+1, as for �4.10�, we find
with �2.1c� that

− b
ds+1u2�n+1�

dxs+1 = �
r=1

s 
s

r
�drb

dxr

ds−r+1u2�n+1�

dxs−r+1 +
ds+2u2n

dxs+2 . �4.13�

Hence

065301-17 Asymptotic analysis of turning point problems J. Math. Phys. 48, 065301 �2007�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

114.70.7.203 On: Tue, 11 Nov 2014 07:31:05



�ds+1u2�n+1�

dxs+1 � 
 �s�b�−1
�
r=1

s

�x�−�s−r+1+2�n+1�� + �x�−�s+2+2n�� 
 �s�x�−�s+1+2�n+1��.

We thus proved that the claim �4.8� is valid for all even j�0, m�1 when J=0.
We now consider the case f =B2J, J�0. We first recursively find: for x� �−1,0�� �0,1�, and

d=0, . . . ,J,

ux
0 = − f/b = − 	

0

x

B2�J−1��s�ds , �4.14a�

ux
2d = − uxx

2�d−1�/b = �− 1�d+1	
0

x

B2�J−1�−2d�s�ds, d = 1, . . . ,J − 2, �4.14b�

ux
2�J−1� = − uxx

2�J−2�/b = �− 1�J	
0

x

B0�s�ds = �− 1�J	
0

x

bx�s�ds , �4.14c�

ux
2J = − uxx

2�J−1�/b = �− 1�J+1bx/b . �4.14d�

Hence the analysis for j=2J is repeating that for j=0 and thus �4.8� follows.
For m=0, j even, j�2J, we notice from �4.8� that, for x�0,

�uj� 
 	
x

1

�ux
j�s��ds 
 � j	

x

1

s−�j+1−2J�ds 
 � j
− ln�x� for j = 2J ,

x−�j−2J� for j � 2J + 1;
� �4.15�

the case x�0 follows similarly.
For m�0, j even, 0
 j
2�J−1�, the right-hand sides of �4.14a�, �4.14b�, and �4.14c� are

smooth and thus

�dmuj

dxm �x�� 
 � jm for �x� � 0. �4.16�

Hence the lemma follows. �

Since di f /dxi�0�=diB2J /dxi�0�=0, i=0, . . . ,2J−1, we conclude that Theorem 3.1 holds with
f =B2J, J�0 for n
J−1. But for n�J, from Lemma 4.1 we observe the logarithmic or power
singularities at x=0 due to uj, j�2J. To handle these singularities, we introduce the interior layers
as follows.

A. Interior layers �̃r
j , �̃l

j , �̃j

Similar to �r
j ,�l

j, we define the interior layers �̃r
j , �̃l

j but, to avoid the singularities of uj at x

=0 as indicated in Lemma 4.1, we this time match the �̃r
j to the ul

j at x=−� and the �̃l
j to the ur

j at

x=�. The interior layers �̃l
j�x̄�, �̃r

j�x̄� satisfy the interior layer equations �2.4� but on �−� ,1�,
�−1,��, respectively, with boundary conditions:

�̃r
j�x̄� = ul

j�x�, �̃rx̄
j �x̄� = ��̃rx

j = �ulx
j �x� at x = − � �x̄ = − 1� , �4.17a�

�̃l
j�x̄� = ur

j�x�, �̃lx̄
j �x̄� = ��̃lx

j = ��̃rx
j �x� at x = � �x̄ = 1� . �4.17b�

We are then able to find explicit solutions �̃r
j , �̃l

j and in particular, for j=0,1, we find that
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�̃r
0 = exp
b1

2
��ulx

0 �− ��	
−1

x̄

exp
−
b1s2

2
�ds + ul

0�− �� , �4.18a�

�̃r
1 = exp
b1

2
��ulx

0 �− ��b23−1	
−1

x̄

�1 + s3�exp
−
b1s2

2
�ds . �4.18b�

Notice that as x̄→�, we easily find that

�̃r
0 → exp
b1

2
��ulx

0 �− ��c̃r,0 + ul
0�− �� ¬ c̃r,�

0 ��� , �4.19a�

�̃r
1 → exp
b1

2
��ulx

0 �− ��b23−1�c̃r,0 + c̃r,1� ¬ c̃r,�
1 ��� , �4.19b�

where c̃r,0=�−1
� exp�−b1s2 /2�ds, c̃r,1=�−1

� s3exp�−b1s2 /2�ds.

As before, we denote by ul
j� �̃r

j �respectively �̃l
j�ur

j� the function on �−1,1� equal to ul
j

�respectively, �̃l
j� on �−1,−�� �respectively, �−1,��� and to �̃r

j �respectively, ur
j� on �−� ,1� �respec-

tively, �� ,1��. Note that due to �4.17�, these functions belong to C1��−1,1�� and to H2�−1,1�; see
Figs. 2�c� and 2�f�:

We now estimate the interior layers �̃r
j , �̃l

j. We first claim that for x̄� �−1,��,

�̃rx̄
j = P3j�x̄�exp
−

b1x̄2

2
�, ∀ j � 0, �4.20�

where P3j�x̄� is a polynomial in x̄ of degree 3j with �unlike before� the absolute value of its
coefficients bounded by � j��+�−�j−2J��.

To prove this claim, we first notice that ul
j =0 for j odd and that from �4.7�, for j even, we have

�ul
j�− ��� 
 � j
1 + �−�j−2J� for j � 2J ,

− ln��� for j = 2J ,
� �ulx

j �− ��� 
 � j�1 + �−�j+1−2J�� . �4.21�

For j=0, the claim �4.20� is easily verified from �4.18�; we notice that P0�x̄�=eb1/2�ulx
0 �−�� and

from �4.21� we find that �P0�x̄�� is bounded by �0��+�2J�. Assume that �4.20� holds for j
n. For

j=n+1, from Eq. �2.4c� with � j being replaced by �̃r
j, we find as in �2.8� that

− 
�̃rx̄
n+1 exp
b1x̄2

2
��

x̄
= �

k=0

n

bn−k+2x̄n−k+2P3k�x̄� = P3n+2�x̄� . �4.22�

By our assumption the absolute values of the coefficients of the P3k�x̄�, k=0, . . . ,n, are bounded
by �n��+�−�n−2J��, and so are those of P3n+2�x̄� in �4.22� and P3�n+1��x̄� in �4.23� and �4.24�. From
�4.22� we thus find that for a constant Cn+1 independent of �,

�̃rx̄
n+1 = �P3�n+1��x̄� + Cn+1�exp
−

b1x̄2

2
� . �4.23�

Hence, by �4.21� and the boundary conditions �4.17� at x̄=−1, we find that

�Cn+1� 
 �P3�n+1��x̄ = − 1�� + exp
b1

2
���ulx

n+1�− ��� 
 �n+1�� + �−�n+1−2J�� . �4.24�

Therefore the absolute values of the coefficients in the polynomial P3�n+1��x̄�+Cn+1 corresponding

to the �̃rx̄
n+1 are bounded by �n+1��+�−�n+1−2J�� as we want. We thus verified our claim �4.20� for all

j�0.
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The following pointwise and norm estimates can be derived.
Lemma 4.2: Let j�0, f =B2J, J�0 and

���, j,J� = 
1 + �−�j−2J� for j � 2J

− ln��� for j = 2J .
� �4.25�

Then there exist positive constants � jm and c such that for x� �−� ,1�,

� dm�̃r
j

dxm � 
 � jm����, j,J� for m = 0

�� + �−�j−2J���−m exp
− c
�x�
�
� for m � 1, � �4.26�

and for �� �−� ,1�,

��̃r
j�Hm��,1� 
 � jm����, j,J� for m = 0

�� + �−�j−2J���−m+1/2 exp
− c
���
�
� for m � 1. � �4.27�

In particular, for m�0,

��̃r
j�Hm�−�,1� 
 � jm����, j,J� + �� + �−�j−2J���−m+1/2� . �4.28�

Furthermore, there exist constants c̃r,�
j ��� with �c̃r,�

j ����
� j��� , j ,J� such that

�̃r
j�x̄� → c̃r,�

j ��� as x̄ → � . �4.29�

Proof: We derive �4.26�, m�1, from �4.20� as we did for �2.18�–�2.19�. For m=0, we notice
that from �4.20� and �4.21�

��̃r
j� = �	

−1

x̄

�̃rx̄
j �s�ds + ul

j�− ��� 
 � j�� + �−�j−2J��	
−1

�

exp
−
b1s2

4
�ds

+ � j�1 + �−�j−2J� for j even � 2J

− ln��� for j = 2J

0 for j odd
� , �4.30�

and thus �4.26� follows.
The norm estimates �4.27� and �4.28� are deduced directly from �4.26�.
The convergence �4.29� follows as in �3.31� and �3.32�. �

Remark 4.2: We can similarly perform the analysis for �̃l
j and derive the pointwise and norm

estimates as above. Here we denote by c̃l,�
j the limit of �̃l

j as x̄→−�.
By our constructions, as in the analysis of �r

j and �l
j, we then notice that, for j�0, the function

g̃j
ª−�ul

j� �̃r
j�− ��̃l

j�ur
j� attain the values −�̃l

j =−c̃l,�
j ���+e.s.t. at x=−1 and −�̃r

j =−c̃r,�
j ���+e.s.t. at

x=1. To remedy these discrepancies between g̃j and u� at the boundaries x=−1,1 �recall that

u��−1�=u��1�=0�, we introduce interior layers �̃ j similar to � j but we use different boundary

conditions as follows: the �̃ j = �̃ j�x̄� satisfy �2.4� and

�̃ j = − �̃l
j at x = − 1, �̃ j = − �̃r

j at x = 1 for j � 0. �4.31�

As before we are able to obtain explicit solutions. In particular,

�̃0 = �0�− c̃l,�
0 ���,− c̃r,�

0 ���� + e.s.t., �4.32a�
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�̃1 = �1�− c̃l,�
0 ���,− c̃r,�

0 ���� + �0�− c̃l,�
1 ���,− c̃r,�

1 ���� + e.s.t., �4.32b�

where �0 and �1 are as in �3.34a�.
The pointwise and norm estimates for �̃ j follow below:
Lemma 4.3: For j�0, there exist positive constants � jm and c such that

� dm�̃ j

dxm � 
 � jm���, j,J��1 for m = 0

�−m exp
− c
�x�
�
� for m � 1, � �4.33�

and for �� �0,1�,

��̃ j�Hm��−1,−�����,1�� 
 � jm���, j,J��1 for m = 0

�−m+1/2 exp
− c
�

�
� for m � 1. � �4.34�

In particular, for m�0,

��̃ j�Hm�−1,1� 
 � jm���, j,J��1 + �−m+1/2� . �4.35�

Proof: We similarly find that Lemma 2.1 is valid with � j being replaced by �̃ j. But we need to

take into account the boundary conditions �4.31�. Using the approximate form of �̃ j as for �̄ j,
�4.32a� and the induction in �2.7�–�2.11� with the boundary conditions �4.31�, namely

Dn+1 = − c̃l,�
n+1���, Cn+1c0 = − c̃r,�

n+1��� + c̃l,�
n+1��� − 	

−�

�

P3�n+1��s�exp
−
b1s2

2
�ds ,

the lemma then follows observing that �c̃r,�
j ����, �c̃l,�

j ����
� j��� , j ,J� and the absolute values of
the coefficients in P3�n+1��s� above are, by induction arguments, bounded by �n��� ,n ,J�. �

B. Asymptotic errors

Let

w�n = u� − �̃�n − �̃�n − �̃�n, �4.36a�

where

�̃�n = �
j=0

2n

� j�ul
j � �̃r

j�, �̃�n = �
j=0

2n

� j��̃l
j � ur

j�, �̃�n = �
j=0

2n

� j�̃ j . �4.36b�

After some elementary calculations, we find that

L�w�n = R5
n + R6

n + R7
n + R8

n + e.s.t. in � , �4.37a�

w�n�− 1� = w�n�1� = 0, �4.37b�

where

R5
n = �2n+2ulxx

2n � 
�
j=0

2n

� j�̃rx
j Rj,2n�b��, R6

n = 
�
j=0

2n

� j�̃lx
j Rj,2n�b�� � �2n+2urxx

2n , �4.37c�
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R7
n = �

j=0

2n

� j�̃x
jRj,2n�b�, R8

n = f�x���−�,���x�; �4.37d�

the Rj,2n�b� are as in �2.21c�. We then deduce from Lemma 4.1 that for x� �−1,−��,

�R5
n�x�� 
 �n�2n+2�1 + �x�−�2n+2−2J�� , �4.38�

and from Lemma 4.2, similar to �2.22�–�2.23�, for x� �−� ,1�,

�R5
n�x�� 
 �

j=0

2n

� j�2n+2−j�x̄�2n+2−j�1 + �−�j+1−2J��exp�− c�x̄�� 
 �n��2n+2 + �2J+1�exp
−
c�x̄�
2
� .

�4.39�

Hence

�R5
n�L2��� 
 ��R5

n�L2�−1,−�� + ��R5
n�L2�−�,1� 
 �n��2J+1/2 + �2n+2� , �4.40�

and similarly,

�R6
n�L2��� 
 �n��2J+1/2 + �2n+2� . �4.41�

As for �2.23� we find that

�R7
n�L2��� 
 �n���,2n,J��2n+3/2 
 �n
�2J+3/2 + �2n+3/2 for n � J

− ln����2J+3/2 for n = J
� 
 �n��2J+1/2 + �2n+3/2� .

�4.42�

Since f =B2J, dmf /dxm�0�=0, m=0, . . . ,2J−1, and hence from the Taylor theorem �f�x��
��x�2J.
We thus find

�R8
n�L2��� 
 �n�	

−�

�

�x�4Jdx�1/2


 �n�2J+1/2. �4.43�

Therefore the following theorem has been proved.
Theorem 4.2: Let u� be the solution of (1.1) with f =B2J, J�0, �=�=0. As �→0, u� is

singular near x=0, its singularity being carried by the interior layers �̃l
j, �̃r

j, and �̃ j. Furthermore,
there exists a constant �n�0 independent of � such that for m=0,1 ,2,

�u� − �̃�n − �̃�n − �̃�n�Hm��� 
 �n��2J+1/2 + �2n+3/2����,m� , �4.44�

where �̃�n, �̃�n, and �̃�n are as in (4.36b) and � is as in (3.40).
Proof: Using �4.40�–�4.43�, the right-hand side of �4.37a� is majorized by �n��2J+1/2

+�2n+3/2� in the L2-norm. The lemma follows applying Lemma 1.1 to Eq. �4.37� with u=w�n. �

Remark 4.3: We note from Theorem 4.2 that increasing both J and n improves the asymptotic
errors.

Remark 4.4: We infer from Theorem 4.2 that the solution u� corresponding to f =B0�x� pos-
sesses the most severe singularities. In this case, we have f =B0�x�=bx�x� and ul

0=−ln��b�x�� /
�b�−1��� for x� �−1,0� and ur

0=−ln��b�x�� / �b�1��� for x� �0,1�. We can then verify that u�→u0 in
L2��� as �→0, where u0=ul

0�ur
0. Indeed, from Theorem 4.2

�u� − ul
0 � �̃r

0 − �̃l
0 � ur

0 − �̃0�L2��� 
 ��1/2. �4.45�

Notice that from �4.31� and �4.33� we find that for x̄�0,

065301-22 C.-Y. Jung and R. Temam J. Math. Phys. 48, 065301 �2007�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

114.70.7.203 On: Tue, 11 Nov 2014 07:31:05



��̃0�x̄� + c̃r,�
0 ���� 
 �	

x̄

�

�̃x̄
0�s�ds� + e.s.t. 
 − � ln���exp�− cx̄� , �4.46�

from �4.26�, �4.29� for x̄�0,

��̃r
0 − c̃r,�

0 ���� = �	
x̄

�

�̃rx̄
0 �s�ds� 
 − � exp�− cx̄� , �4.47�

and thus

��̃r
0 + �̃0� 
 ��̃r

0 − c̃r,�
0 ���� + ��̃0 + c̃r,�

0 ���� 
 − � ln���exp�− cx̄� . �4.48�

Similarly for x̄�0, ��̃l
0+ �̃0�
−� ln���exp�cx̄�. Hence for 0���1,

�u� − ul
0�L2�−1,−��� 
 �u� − ul

0 � �̃r
0 − �̃l

0 � ur
0 − �̃0�L2�−1,−��� − ��1/2 ln���exp�− c��−1� . �4.49�

From �4.45� we find that �u�−ul
0�L2�−1,−���
��1/2, similarly �u�−ur

0�L2���,1�
��1/2. As in Remark

2.2, we can, for n=0, write the left-hand side of �4.44� as �u�−u0− ��̃�0+ �̃�0+ �̃�0−u0��Hm���, where

the corrector �̃�0+ �̃�0+ �̃�0−u0 vanishes at x=−1 and 1, and is discontinuous at x=0.
Remark 4.5: Combining the results of Secs. II–IV we are able to consider the case where f and

b are noncompatible and � and � are arbitrary. We just write u�=u1
� +u2

� +u3
� with

L�u1
� = 0, u1

��− 1� = �, u1
��1� = � ,

L�u2
� = f − �

k=0

N

�kBk�x�, u2
��− 1� = u2

��1� = 0, �4.50�

L�u3
� = �

k=0

N

�kBk�x�, u3
��− 1� = u3

��1� = 0.

The asymptotic behavior of the solutions of each problem is analyzed, respectively, in Secs. II–IV.

V. EXAMPLES

Before we present some applications of the results above, we start with the following useful
theorem:

Theorem 5.1: Assume that b�x�=−b�−x� in the neighborhood of x=0 and the following
compatibility conditions hold:4

d2i f

dx2i �0� = 0 for 0 
 i 
 M . �5.1�

Let u� be the solution of (1.1) with �=�=0. Then there exists a constant �n�0 independent of �
such that for n
M, m=0,1 ,2,

�u� − ��n − ��n − ��n�Hm��� 
 �n�2n+3/2���,m� , �5.2�

where ��n, ��n, and ��n are as in (3.35b) and � is as in (3.40).
Proof: Let

4If f is odd �i.e., f�x�=−f�−x�� in the neighborhood of x=0, �5.1� is obviously satisfied.
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f̂ = f − �
J=0

M

�JB2J+1�x� . �5.3�

Since dlB2J+1 /dxl�0�=0 for l�2J+1 and �0 for l=2J+1, we may choose �J’s so that

dl f̂ /dxl�0�=0 for l=2J+1, J=0, . . . ,M. Notice also that since B1�x�=b�x� is odd in the neighbor-
hood of x=0, so is B2J+1�x�, J�0 and hence dlB2J+1 /dxl�0�=0, for l even. Thus thanks to �5.1�,
dl f̂ /dxl�0�=0 for l even and hence we have dl f̂ /dxl�0�=0 for l=0,1 , . . . ,2M +1.

The theorem follows from Theorem 3.1 and Theorem 4.1 observing that for n
M,

�u� − ��n − ��n − ��n�Hm��� 
 �u�, f̂ − ��n
f̂ − ��n

f̂ − ��n
f̂ �Hm��� + �

J=0

M

�u�,J − ��n
J − ��n

J − ��n
J �Hm���.

�5.4�

Here u�=u�, f̂ +�J=0
M u�,J; u�, f̂, u�,J are the solutions corresponding to f̂ , �JB2J+1�x�, respectively; ��n

f̂ ,

��n
f̂ , ��n

f̂ are the asymptotic expansions corresponding to f̂ and ��n
J , ��n

J , ��n
J to �JB2J+1�x�. �

We now show how to apply the Theorem 5.1 and the asymptotic expansions introduced in
Secs. II–IV to some simple examples.

Example 5.1: For b=x, f =sin x, �=�=0, we notice that b is odd and dmf /dxm�0�=0 for m
even. From Theorem 5.1 we easily find that �5.2� holds for all n�0.

Example 5.2: For b=sin x, f =x, �=�=0, we find that b is odd and dmf /dxm�0�=0, for 1
�m�0. We then easily see that in this case �5.2� holds for all n�0.

Example 5.3: For b=x, f =1−ex, �=�=0, we find that b is odd and f�0�=0, dmf /dxm�0�
�0, for m�1. In this case we find that �5.2� holds for n=0. If we utilize the asymptotic expan-
sions corresponding to B2�x�=x2, introduced in Sec. IV, we can improve the asymptotic errors. We
first decompose f into f1, f2:

f1 = f − �B2�x� = 1 − ex − �x2, �5.5�

f2 = �B2�x� = �x2. �5.6�

We choose �=−1/2 so that f1�0�=d2f1 /dx2�0�=0. From Theorem 5.1, we easily find that for n
=0,1,

�u�,1 − ��n − ��n − ��n�Hm��� 
 ��2n+3/2���,m� , �5.7�

where u�,1 and ��n, ��n, ��n are the solution and the asymptotic expansions corresponding to f1 and
��� ,m� is given in �3.40�. From Theorem 4.2 we find that

�u�,2 − �̃�n − �̃�n − �̃�n�Hm��� 
 �n��5/2 + �2n+3/2����,m� , �5.8�

where u�,2 and �̃�n, �̃�n, �̃�n are the solution and the asymptotic expansions corresponding to f2

=�B2�x�. We thus find that for n=0,1, m=0,1 ,2,

�u� − ��n − ��n − ��n − �̃�n − �̃�n − �̃�n�Hm��� 
 ���5/2 + �2n+3/2����,m� . �5.9�

Example 5.4: For b=x, f =ex, �=�=0, no compatibility condition is satisfied and singularities
occur. We decompose f into f1, f2:

f1 = f − �B0�x� = ex − � , �5.10�

f2 = �B0�x� = � . �5.11�

We choose �=1 so that f1�0�=0. From Theorem 5.1 as in Example 5.3 we find that for n=0,
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�u�,1 − ul
0 � �r

0 − �l
0 � ur

0 − �0�Hm��� 
 ��3/2���,m� . �5.12�

From Theorem 4.2 we find that

�u�,2 − ul
0 � �̃r

0 − �̃l
0 � ur

0 − �̃0�Hm��� 
 ��1/2���,m� . �5.13�

We thus have

�u� − ul
0 � �r

� − �l
0 � ur

0 − �0 − ul
0 � �̃r

0 − �̃l
0 � ur

0 − �̃0�Hm��� 
 ��1/2���,m� . �5.14�

For ��0 or ��0 in Examples 5.1–5.4, we just additionally apply Theorem 2.1.
Remark 5.1: In Example 5.4, as we did in Remarks 4.1 and 4.4, we can verify that u�→u0 in

L2��� as �→0, where

u0 = − ln��x�� + �− 	
−1

x es − 1

s
ds

	
x

1 es − 1

s
ds � = �− 	

−1

x es

s
ds for x � �− 1,0�

	
x

1 es

s
ds for x � �0,1� . � �5.15�

VI. CONCLUDING REMARKS

In this article we have studied the turning points which appear in the linear equation �1.1�. We
have shown the diversity of situations which can occur, including the following: an internal
�interior� boundary layer near the turning point which may be supplemented by boundary layers at
the end points; or even the occurrence of logarithmic singularities �or negative power singularities�
at such points. Expressed in an oversimplified way, the difficulty comes from the fact that the
information propagates from the end points into the interior and they meet and possibly collide at
the turning point.

We have systematically detected the singular terms �interior layers� due to the turning point at
x=0 in Secs. II–IV as well as the outer solutions. To obtain the asymptotic errors in the Hm-spaces,
m=0,1 ,2, we have smoothly �C1� matched the outer and the interior layer solutions with the
boundary conditions �3.20� and �4.17�, which enables us to perform the global analysis on the
whole domain �= �−1,1�.

Using the standard asymptotic technique with regard to the small parameter � we derived the
outer solutions and the interior layer solutions which carry out the singularities or discontinuities
of the outer solutions at x=0. Employing regularity results for the problem under consideration we
obtained in the Sobolev context sharp asymptotic estimates of the error between the exact solution
of �1.1� and the asymptotic expressions composed of the outer and interior layer solutions which
are matched with H2 �or C1�-smoothness.

In the numerical simulations context, understanding turning point behaviors, e.g., monotone
transition layers, spikes �see Desanti �1987a, b��, logarithmic singularities, one needs to either
design sophisticated �irregular� meshes �see, e.g., Stynes �2005�� or one can utilize the singular
functions �splines� which absorb the singularities due to the small �. This approach was used in the
context of singular perturbations in, e.g., Cheng and Temam �2002�; Cheng et al. �2000�; Jung and
Temam �2005; 2006�; and Jung �2005�. The idea of utilizing explicit forms of singularities in
numerical schemes was also used in different contexts in, e.g., Cai et al. �1989�; and Hou and Wu
�1997�. It was shown in these articles that this procedure can save much computing time; these
numerical issues will be addressed elsewhere.
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Note added in proofs: After this article went to press we learned of a number of relevant
references related to turning point problems. The comparison of these articles with the present one
is as follows. The references, Berger et al. �1984�; Sun and Stynes �1994�, discuss the following
type of two-point boundary value problem:

− �2uxx
� − b�x�ux

� + c�x�u� = f�x� in �− 1,1� ,

u��− 1� = u��1� = 0,

where b�x�, c�x�, and f�x� are smooth and c�x���0�0; b�x� is allowed to have, respectively, a
finite number of simple zeros in Berger et al. �1984� and a multiple zero in Sun and Stynes �1994�.
These two articles discuss the estimates of the solution u� and its derivatives and the uniformly
convergent numerical methods: in Berger et al. �1984� a modified El-Mistikawy-Werle scheme
which is an exponentially fitted finite difference scheme adapted to the differential operator and in
Sun and Stynes �1994� finite elements scheme on nonuniform meshes �more refined meshes near
the turning points�. We note that due to the condition c�x��0 there is no compatibility issue in the
limit porblem, i.e. when �=0 we have u0�0�= f�0� /c�0� in case that b�0�=0, and thus we only have
interior layers due to singularities of cusp or spike types. On the other hand, our article covers both
the compatible and noncompatible cases �note that b�0�u0�0�=0= f�0� for Eq. �1.1�� and thus our
problems encompass a greater variety of behaviors, with more severe interior layers due to loga-
rithmic and negative power singularities as well as cusps or spikes.

In Hemker �1977� and Han and Kellogg �1982; 1983�, the authors suggest how to construct
the Finite Element basis for uniformly approximating the solutions for the singularly perturbed
problems in the one dimensional space; these articles are devoted to the boundary and interior
layers in Hemker �1977� and the boundary layers in Han and Kellogg �1982; 1983�. Hemker
�1977� discusses the so-called exponentially fitted splines adapted to a given differential operator
and Han and Kellogg �1982; 1983� construct classical polynomial elements spaces enriched with
a singular function which absorbs the boundary layer singularities. The idea using the explicit
form of singularities due to the small � in the Finite Element basis can be extended to the turning
point problems and these extensions will appear elsewhere.

The authors thank the anonymous referees of the article Jung and Teman for pointing these
articles to their attention. The article Jung and Teman addresses a linear algebra problem; it does
not address turning points issues.
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