615 research outputs found

    Sensorless Position Control of Piezoelectric Ultrasonic Motors:a Mechatronic Design Approach

    Get PDF
    This dissertation considers mechatronic systems driven by piezoelectric ultrasonic motors (PUM). The focus is set on optimal system design and sensorless position control. Mechatronic industry faces the challenge to deliver ever more efficient and reliable products while being confronted to increasingly short time to market demands and economic constraints driven by competition. Although optimal design strategies are applied to master this challenge, they do not entirely respond to the given circumstances, as often only local criteria are optimised. In order to obtain a globally optimal solution, the many subfunctions of a mechatronic system and their models must be interrelated and evaluated concurrently from the very beginning of the design process. In this context PUM have been used increasingly during the last decade for various positioning applications in the field of mechatronic systems, laboratory equipment, and consumer electronics where their performances are superior to conventional electromechanical drive systems based on DC or BLDC motors. The position of the mobile component must be controlled. In some cases open-loop control is a solution, but more often than not sensors are used as feedback device in closed-loop control. Sensors are expensive, large in size and add fragile hardware to the device that compromises its reliability. Thus, not only the superior performance is not fully exploited but also the economical feasibility of the PUM drive system is jeopardised. Replacing sensors by advanced control techniques is an approach to these problems that is well established in the field of BLDC motors. Those sensorless control strategies are not directly transferrable, because of the fundamentally different working principles of PUM. Hence, the research of sensorless closed-loop position control techniques applicable to PUM and their validation with digitally controlled functional models is the very topic of this thesis. We propose a dedicated design methodology to this statement of the problem. A core model of the mechatronic system is conceived as general and simple as possible. It then develops for the different interrelated views reflecting the mechanical, electromechanical, drive electronic, sensorial and digital control functions of the global system. Each one becoming more specific and detailed in this process, the different views still enable mutual constraint adjustments and the dynamic integration of results from the other views during the design process. Starting with the stator of the PUM, a view describes the mechanical displacement. An electric equivalent model is written such that power input from the drive electronics is related to the mechanical energy transmitted to the mechanics. The resulting differential equations are solved by the finite element method (FEM). Position feedback configurations in the mobile part of the PUM are modelled analytically in order to be implemented in digital control and their electrical implications are updated to the stator model. In this way, sensors do not necessarily materialise physically any more, but are distributed among the mechanical configuration, the drive electronics and the digital controller. With respect to the sensor data, the controller is not simply receiving finalised data on the measured system parameter, but rather implements the sensor itself in software. Finally, the position detection performance obtained with the aforementioned design methodology was evaluated with the example of mechatronic locking devices actuated by custom-made as well as OEM motors. Functional models of motors, electronics and digital controllers were used to identify the limits of the proposed methods, and suggestions for further research were deduced. These results contribute to the development of robust sensorless position controllers for PUM

    Nonlinear characterisation of power ultrasonic devices used in bone surgery

    Get PDF
    Ultrasonic cutting has existed in surgery since the 1950s. However, it was not until the end of the 20th century that advances in ultrasonic tool design, transduction and control allowed commercially viable ultrasonic cutting devices to enter the market. Ultrasonic surgical devices, like those in other power ultrasonic applications such as drilling and welding, require devices to be driven at high power to ensure sufficient output motion is produced to fulfil the application it is designed to perform. With the advent of novel surgical techniques surgeons require tuned ultrasonic tools which can reduce invasiveness while giving access to increasingly difficult to reach surgical sites. To fulfil the requirements of novel surgical procedures new tuned tools need to be designed. Meanwhile, it is well documented that power ultrasonic devices, whilst driven at high power, are inherently nonlinear and, if no attempt is made to understand and subsequently control these behaviours, it is likely that these devices will suffer from poor performance or even failure. The behaviour of the commercial ultrasonic transducer used in bone surgery (PiezosurgeryÂź Device) is dynamically characterised through finite element and experimental methods whilst operating in conjunction with a variety of tuned inserts. Finite element analysis was used to predict modal parameters as well as stress levels within the tuned devices whilst operating at elevated amplitudes of vibration, while experimental modal analysis validated predicted resonant frequencies and mode shapes between 0-80kHz. To investigate the behaviour of tuned devices at elevated vibrational amplitudes near resonance, responses were measured whilst the device was excited via the burst sine sweep method. In an attempt to provide an understanding of the effects that geometry, material selection and wavelength of tuned assemblies have on the behaviour of an ultrasonic device, tuned inserts consisting of a simple rod horn design were characterised alongside more complex cutting inserts which are used in maxillofacial and craniofacial surgery. From these results the aim will be to develop guidelines for design of tuned inserts. Meanwhile, Langevin transducers, commonly known as sandwich or stack transducers, in their most basic form generally consist of four parts; a front mass, a back mass, a piezoceramic stack and a stud or bolt holding the parts together under a compressive pre-load. It is traditionally proposed that the piezoceramic stack is positioned at or close to the vibrational nodal point of the longitudinal mode, however, this also corresponds with the position of highest dynamic stress. It is also well documented that piezoceramic materials possess a low linear stress threshold, therefore this research, in part, investigates whether locating the piezoceramic stack away from a position of intrinsic high stress will affect the behaviour of the device. Through experimental characterisation it has been observed that the tuned devices under investigation exhibited; resonant frequency shifts, jump amplitudes, hysteretic behaviour as well as autoparametric vibration. The source of these behaviours have been found to stem from device geometry, but also from heating within the piezoceramic elements as well as joints with different joining torques

    Design and analysis of ultrasonic horns operating in longitudinal and torsional vibration

    Get PDF
    Combining modes of vibration, such as longitudinal and torsional vibration, is advantageous in many ultrasonic applications such as ultrasonic drilling, welding, and motors. In this work we present a novel approach to the design a longitudinal-torsional (LT) ultrasonic horn which adapts the front mass in a traditional Langevin transducer. Different approaches, such as degeneration of longitudinal vibration and coupling between longitudinal (L) and torsional (T) modes, have been used to generate the LT mode of vibration. The degeneration approach creates a non-uniform section, by cutting and twisting a number of slots along the path of the L wave such that part of the wave converts into T wave whilst the remaining part propagates unchanged through the section; these two parts are recombined near the output surface to form LT vibration. The mode coupling approach uses two set of vibration generators, usually piezoelectric elements, where one set generates L vibration whilst the second set generates T vibration. An exponential cross-sectional horn uses to combine the two modes where the area reduction factor is selected such that these modes resonate at the same frequency. However, many limitations prevent the wide usage of these methods in ultrasonic applications. These limitations are the complex design and excitation, possible coupling with surrounding modes, instability in operating at different boundaries, difficulty in securing the structure without influencing the vibrational response and the low produced torsionality, which is the ratio of torsional to longitudinal response at the output face. The new approach is based on combining the principles of these methods to overcome the previously stated limitations, the slotting technique is incorporated into the exponential cross-sectional path and the horn produced is utilised as the front mass of a Langevin transducer. A set of design and performance criteria are used to optimise the transducer and includes applicable design; methods of securing the transducer; and the excitation features of LT transducer such that it can operate without the effects of surrounding modes of vibration and can produce high response and torsionality at the output surface. A methodology which combines mathematical and experimental modelling is used to optimise LT transducer design. The mathematical modelling, which includes finite element (FE) and analytical methods, is performed to optimise the geometry and to predict electromechanical parameters, modal parameters and the dynamic behaviour of LT transducer. The experimental modelling is used to validate the mathematical results and to characterise the fabricated prototypes under different operating conditions. The dimensions of the initial design of the L mode Langevin transducer are derived from the principles of the wave equation. This transducer has a set of piezoceramic components sandwich between a cylindrical back mass and an exponential front mass connected by a pre-stressed bolt. The dimensions are used to create the FE model, using the FE software package ABAQUS, where different shapes of cut at different dimensions and at various angle of twist along the front mass are introduced and examined by a modal analysis procedure to the front mass. An optimised model is then utilised in a size scaling study to confirm the suitability of using this approach for different ultrasonic applications. The dimensions of the optimised design are also used in the analytical study, based on Mason’s electric equivalent circuit approach, to predict the electromechanical parameters where a one-dimensional equivalent circuit approach is created separately for each part whilst the combination vibrational motion in the front mass is represented by two, longitudinal and torsional, equivalent circuits. The complete equivalent network of the LT transducer is then solved using the mathematical software package MATHEMATICA. The analytical model is also extended to validate some of particular FE findings such as the distribution of the response amplitude and the location of the longitudinal nodal plane along the transducer’s structure. Two optimised models of different sizes are fabricated and characterised through different testing techniques including electrical impedance analysis, experimental modal analysis (EMA) and experimental harmonic analysis. Optimisation of the pre-stressing of the transducer is performed by applying different torques to the pre-stressed bolt and measuring the electrical impedance spectra where the results are compared to analytical findings. EMA is then used to describe the natural characteristics of the structures where the results are used to accurately extract the modal parameters and to validate the predictions of the FE and analytical model. Different levels of harmonic excitation are used to characterise the fabricated prototypes where the results are compared to the findings of the mathematical modelling. A case study of the design of the LT drill is presented to validate the design approach for real ultrasonic applications. A similar methodology is applied and the resulting LT drill is tested for both unloaded and loaded operating conditions. The results obtained show that this new approach can be easily and successfully applied to ultrasonic applications to produce a torsional to longitudinal amplitude response of 0.8 which is measured on a fabricated prototype

    Review of Multiaxial Testing for Very High Cycle Fatigue: From ‘Conventional’ To Ultrasonic Machines

    Get PDF
    Fatigue is one of the main causes for in service failure of mechanical components and structures. With the development of new materials, such as high strength aluminium or titanium alloys with different microstructures from steels, materials no longer have a fatigue limit in the classical sense, where it was accepted that they would have ‘infinite life’ from 10 million (107) cycles. The emergence of new materials used in critical mechanical parts, including parts obtained from metal additive manufacturing (AM), the need for weight reduction and the ambition to travel greater distances in shorter periods of time, have brought many challenges to design engineers, since they demand predictability of material properties and that they are readily available. Most fatigue testing today still uses uniaxial loads. However, it is generally recognised that multiaxial stresses occur in many full-scale structures, being rare the occurrence of pure uniaxial stress states. By combining both Ultrasonic Fatigue Testing with multiaxial testing through Single-Input-Multiple-Output Modal Analysis, the high costs of both equipment and time to conduct experiments have seen a massive improvement. It is nowadays possible to test materials under multiaxial loading conditions and for very high number of cycles in a fraction of the time compared to non-ultrasonic fatigue testing methods (days compared to months or years). This work presents the current status of ultrasonic fatigue testing machines working at a frequency of 20 kHz to date, with emphasis on multiaxial fatigue and very high cycle fatigue. Special attention will be put into the performance of multiaxial fatigue tests of classical cylindrical specimens under tension/torsion and flat cruciform specimens under in-plane bi-axial testing using low cost piezoelectric transducers. Together with the description of the testing machines and associated instrumentation, some experimental results of fatigue tests are presented in order to demonstrate how ultrasonic fatigue testing can be used to determine the behaviour of a steel alloy from a railway wheel at very high cycle fatigue regime when subjected to multiaxial tension/torsion loadings

    Modeling and optimization of ultrasonic linear motors

    Get PDF
    Ultrasonic motors have received much attention these last years, in particular with regard to their modeling and their design principle. Their operating principle is based on piezoelectric ceramics that convert electrical energy into mechanical energy in the form of vibrations of an elastic body whose surface points perform an elliptic motion with a frequency in the ultrasonic range (≄ 20 kHz). The moving part, which is pressed against the vibrating body by a prestressing force, can move thanks to the friction forces presented at the interface between the stator (resonator) and the rotor (slider). Their specific properties make ultrasonic motors a very attractive solution for a direct transmission for different applications like precise positioning devices. Indeed, they present the possibility to obtain unlimited motions, high resolution and excellent dynamics of positioning. Then, it is obvious that ultrasonic motors could be used in new application fields, in particular to replace conventional electromagnetic motors. However, they have to overcome two principal difficulties: their efficiency is rather poor and they are often too expensive. Moreover, their use in the car industry or for the positioning of axes in machine tools for example requires driving forces and velocities higher than those which they currently present. Analytical modeling of such motors is not obvious and assumptions that are made are often too restrictive. This is why the use of a numerical modeling (3-D) is necessary to model the behavior of this type of motors. Thus, finite element simulations are used but they often require high computing times. To avoid it, the number of simulations can be decreased by choosing the input parameters (dimensions, materials, boundary conditions,...) more judiciously according to their influence on the output parameters. Thus, one can obtain the sensitivity of an input parameter on the value of the output parameter. With this intention, the application of design of experiments has been adopted in this thesis work. This methodology, applied to finite element simulations, is an innovative technique in the field of theoretical modeling of such motors. This methodology is particularly interesting in sight of predicting the results but also to find out an optimal set of input parameters for the motor. According to the results obtained and presented in this thesis work, the use of design of experiments in the field of ultrasonic motors modeling proves to be very promising and demonstrates to be a powerful tool. The application of the proposed methodology for the optimization of an ultrasonic linear motor used for the auto-focus function of the lens of an optical system also made it possible to show the validity and the potential of this optimization method

    Ultrasonically-assisted drilling of carbon fibre-reinforced plastics

    Get PDF
    Carbon fibre-reinforced plastics (CFRP) are widely used in aerospace, automobile and other structural applications due to their superior mechanical and physical properties. CFRP outperform conventional metals in high strength-to-weight ratio. Usually, CFRP parts are manufactured near to net-shape;however,machining is unavoidable when it comes to assembly. Drilling the holes are essential to facilitate riveting and bolting of the components. However, conventional drilling (CD) induces different types of damages such as cracking, fibre pull-out, sprintling and delamination due to the abrasive nature, inhomogeneity and anisotropy of CFRP. A novel technique, ultrasonically-assisted drilling (UAD) is hybrid machining technique in which highfrequency (typically above 20 kHz) vibration are superimposed on a standard twist drill bit in axial direction using ultrasonic transducer. UAD has shown several advantages such as thrust force reduction, improving surface quality and lower bur-formation in drilling of conventional metals. UAD has also effectively been used for drilling brittle materials. [Continues.

    Review of Multiaxial Testing for Very High Cycle Fatigue: From ‘Conventional’ to Ultrasonic Machines

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Fatigue is one of the main causes for in service failure of mechanical components and structures. With the development of new materials, such as high strength aluminium or titanium alloys with different microstructures from steels, materials no longer have a fatigue limit in the classical sense, where it was accepted that they would have ‘infinite life’ from 10 million (107) cycles. The emergence of new materials used in critical mechanical parts, including parts obtained from metal additive manufacturing (AM), the need for weight reduction and the ambition to travel greater distances in shorter periods of time, have brought many challenges to design engineers, since they demand predictability of material properties and that they are readily available. Most fatigue testing today still uses uniaxial loads. However, it is generally recognised that multiaxial stresses occur in many full-scale structures, being rare the occurrence of pure uniaxial stress states. By combining both Ultrasonic Fatigue Testing with multiaxial testing through Single-Input-Multiple-Output Modal Analysis, the high costs of both equipment and time to conduct experiments have seen a massive improvement. It is presently possible to test materials under multiaxial loading conditions and for a very high number of cycles in a fraction of the time compared to non-ultrasonic fatigue testing methods (days compared to months or years). This work presents the current status of ultrasonic fatigue testing machines working at a frequency of 20 kHz to date, with emphasis on multiaxial fatigue and very high cycle fatigue. Special attention will be put into the performance of multiaxial fatigue tests of classical cylindrical specimens under tension/torsion and flat cruciform specimens under in-plane bi-axial testing using low cost piezoelectric transducers. Together with the description of the testing machines and associated instrumentation, some experimental results of fatigue tests are presented in order to demonstrate how ultrasonic fatigue testing can be used to determine the behaviour of a steel alloy from a railway wheel at very high cycle fatigue regime when subjected to multiaxial tension/torsion loadings.Peer reviewedFinal Published versio

    Protective hood

    Get PDF
    Protective hood is intended to give limited protection to head and neck. It is an interface device of a properly selected and configured protective ensemble during fire fighting and related emergency response activities
    • 

    corecore