11,466 research outputs found

    PyDEC: Software and Algorithms for Discretization of Exterior Calculus

    Full text link
    This paper describes the algorithms, features and implementation of PyDEC, a Python library for computations related to the discretization of exterior calculus. PyDEC facilitates inquiry into both physical problems on manifolds as well as purely topological problems on abstract complexes. We describe efficient algorithms for constructing the operators and objects that arise in discrete exterior calculus, lowest order finite element exterior calculus and in related topological problems. Our algorithms are formulated in terms of high-level matrix operations which extend to arbitrary dimension. As a result, our implementations map well to the facilities of numerical libraries such as NumPy and SciPy. The availability of such libraries makes Python suitable for prototyping numerical methods. We demonstrate how PyDEC is used to solve physical and topological problems through several concise examples.Comment: Revised as per referee reports. Added information on scalability, removed redundant text, emphasized the role of matrix based algorithms, shortened length of pape

    Complexes of Discrete Distributional Differential Forms and their Homology Theory

    Full text link
    Complexes of discrete distributional differential forms are introduced into finite element exterior calculus. Thus we generalize a notion of Braess and Sch\"oberl, originally studied for a posteriori error estimation. We construct isomorphisms between the simplicial homology groups of the triangulation, the discrete harmonic forms of the finite element complex, and the harmonic forms of the distributional finite element complexes. As an application, we prove that the complexes of finite element exterior calculus have cohomology groups isomorphic to the de Rham cohomology, including the case of partial boundary conditions. Poincar\'e-Friedrichs-type inequalities will be studied in a subsequent contribution.Comment: revised preprint, 26 page

    Convergence and Optimality of Adaptive Mixed Methods on Surfaces

    Full text link
    In a 1988 article, Dziuk introduced a nodal finite element method for the Laplace-Beltrami equation on 2-surfaces approximated by a piecewise-linear triangulation, initiating a line of research into surface finite element methods (SFEM). Demlow and Dziuk built on the original results, introducing an adaptive method for problems on 2-surfaces, and Demlow later extended the a priori theory to 3-surfaces and higher order elements. In a separate line of research, the Finite Element Exterior Calculus (FEEC) framework has been developed over the last decade by Arnold, Falk and Winther and others as a way to exploit the observation that mixed variational problems can be posed on a Hilbert complex, and Galerkin-type mixed methods can be obtained by solving finite dimensional subproblems. In 2011, Holst and Stern merged these two lines of research by developing a framework for variational crimes in abstract Hilbert complexes, allowing for application of the FEEC framework to problems that violate the subcomplex assumption of Arnold, Falk and Winther. When applied to Euclidean hypersurfaces, this new framework recovers the original a priori results and extends the theory to problems posed on surfaces of arbitrary dimensions. In yet another seemingly distinct line of research, Holst, Mihalik and Szypowski developed a convergence theory for a specific class of adaptive problems in the FEEC framework. Here, we bring these ideas together, showing convergence and optimality of an adaptive finite element method for the mixed formulation of the Hodge Laplacian on hypersurfaces.Comment: 22 pages, no figures. arXiv admin note: substantial text overlap with arXiv:1306.188

    Discrete exterior calculus (DEC) for the surface Navier-Stokes equation

    Full text link
    We consider a numerical approach for the incompressible surface Navier-Stokes equation. The approach is based on the covariant form and uses discrete exterior calculus (DEC) in space and a semi-implicit discretization in time. The discretization is described in detail and related to finite difference schemes on staggered grids in flat space for which we demonstrate second order convergence. We compare computational results with a vorticity-stream function approach for surfaces with genus 0 and demonstrate the interplay between topology, geometry and flow properties. Our discretization also allows to handle harmonic vector fields, which we demonstrate on a torus.Comment: 21 pages, 9 figure

    Differential Calculi on Commutative Algebras

    Full text link
    A differential calculus on an associative algebra A is an algebraic analogue of the calculus of differential forms on a smooth manifold. It supplies A with a structure on which dynamics and field theory can be formulated to some extent in very much the same way we are used to from the geometrical arena underlying classical physical theories and models. In previous work, certain differential calculi on a commutative algebra exhibited relations with lattice structures, stochastics, and parametrized quantum theories. This motivated the present systematic investigation of differential calculi on commutative and associative algebras. Various results about their structure are obtained. In particular, it is shown that there is a correspondence between first order differential calculi on such an algebra and commutative and associative products in the space of 1-forms. An example of such a product is provided by the Ito calculus of stochastic differentials. For the case where the algebra A is freely generated by `coordinates' x^i, i=1,...,n, we study calculi for which the differentials dx^i constitute a basis of the space of 1-forms (as a left A-module). These may be regarded as `deformations' of the ordinary differential calculus on R^n. For n < 4 a classification of all (orbits under the general linear group of) such calculi with `constant structure functions' is presented. We analyse whether these calculi are reducible (i.e., a skew tensor product of lower-dimensional calculi) or whether they are the extension (as defined in this article) of a one dimension lower calculus. Furthermore, generalizations to arbitrary n are obtained for all these calculi.Comment: 33 pages, LaTeX. Revision: A remark about a quasilattice and Penrose tiling was incorrect in the first version of the paper (p. 14

    Spectral Numerical Exterior Calculus Methods for Differential Equations on Radial Manifolds

    Full text link
    We develop exterior calculus approaches for partial differential equations on radial manifolds. We introduce numerical methods that approximate with spectral accuracy the exterior derivative d\mathbf{d}, Hodge star ⋆\star, and their compositions. To achieve discretizations with high precision and symmetry, we develop hyperinterpolation methods based on spherical harmonics and Lebedev quadrature. We perform convergence studies of our numerical exterior derivative operator d‾\overline{\mathbf{d}} and Hodge star operator ⋆‾\overline{\star} showing each converge spectrally to d\mathbf{d} and ⋆\star. We show how the numerical operators can be naturally composed to formulate general numerical approximations for solving differential equations on manifolds. We present results for the Laplace-Beltrami equations demonstrating our approach.Comment: 22 pages, 13 figure
    • …
    corecore