research

Convergence and Optimality of Adaptive Mixed Methods on Surfaces

Abstract

In a 1988 article, Dziuk introduced a nodal finite element method for the Laplace-Beltrami equation on 2-surfaces approximated by a piecewise-linear triangulation, initiating a line of research into surface finite element methods (SFEM). Demlow and Dziuk built on the original results, introducing an adaptive method for problems on 2-surfaces, and Demlow later extended the a priori theory to 3-surfaces and higher order elements. In a separate line of research, the Finite Element Exterior Calculus (FEEC) framework has been developed over the last decade by Arnold, Falk and Winther and others as a way to exploit the observation that mixed variational problems can be posed on a Hilbert complex, and Galerkin-type mixed methods can be obtained by solving finite dimensional subproblems. In 2011, Holst and Stern merged these two lines of research by developing a framework for variational crimes in abstract Hilbert complexes, allowing for application of the FEEC framework to problems that violate the subcomplex assumption of Arnold, Falk and Winther. When applied to Euclidean hypersurfaces, this new framework recovers the original a priori results and extends the theory to problems posed on surfaces of arbitrary dimensions. In yet another seemingly distinct line of research, Holst, Mihalik and Szypowski developed a convergence theory for a specific class of adaptive problems in the FEEC framework. Here, we bring these ideas together, showing convergence and optimality of an adaptive finite element method for the mixed formulation of the Hodge Laplacian on hypersurfaces.Comment: 22 pages, no figures. arXiv admin note: substantial text overlap with arXiv:1306.188

    Similar works

    Full text

    thumbnail-image

    Available Versions