8 research outputs found

    Multilevel Solvers for Unstructured Surface Meshes

    Get PDF
    Parameterization of unstructured surface meshes is of fundamental importance in many applications of digital geometry processing. Such parameterization approaches give rise to large and exceedingly ill-conditioned systems which are difficult or impossible to solve without the use of sophisticated multilevel preconditioning strategies. Since the underlying meshes are very fine to begin with, such multilevel preconditioners require mesh coarsening to build an appropriate hierarchy. In this paper we consider several strategies for the construction of hierarchies using ideas from mesh simplification algorithms used in the computer graphics literature. We introduce two novel hierarchy construction schemes and demonstrate their superior performance when used in conjunction with a multigrid preconditioner

    Semilinear mixed problems on Hilbert complexes and their numerical approximation

    Full text link
    Arnold, Falk, and Winther recently showed [Bull. Amer. Math. Soc. 47 (2010), 281-354] that linear, mixed variational problems, and their numerical approximation by mixed finite element methods, can be studied using the powerful, abstract language of Hilbert complexes. In another recent article [arXiv:1005.4455], we extended the Arnold-Falk-Winther framework by analyzing variational crimes (a la Strang) on Hilbert complexes. In particular, this gave a treatment of finite element exterior calculus on manifolds, generalizing techniques from surface finite element methods and recovering earlier a priori estimates for the Laplace-Beltrami operator on 2- and 3-surfaces, due to Dziuk [Lecture Notes in Math., vol. 1357 (1988), 142-155] and later Demlow [SIAM J. Numer. Anal., 47 (2009), 805-827], as special cases. In the present article, we extend the Hilbert complex framework in a second distinct direction: to the study of semilinear mixed problems. We do this, first, by introducing an operator-theoretic reformulation of the linear mixed problem, so that the semilinear problem can be expressed as an abstract Hammerstein equation. This allows us to obtain, for semilinear problems, a priori solution estimates and error estimates that reduce to the Arnold-Falk-Winther results in the linear case. We also consider the impact of variational crimes, extending the results of our previous article to these semilinear problems. As an immediate application, this new framework allows for mixed finite element methods to be applied to semilinear problems on surfaces.Comment: 22 pages; v2: major revision, particularly sharpening of error estimates in Section

    Numerical analysis for the Plateau problem by the method of fundamental solutions

    Full text link
    Towards identifying the number of minimal surfaces sharing the same boundary from the geometry of the boundary, we propose a numerical scheme with high speed and high accuracy. Our numerical scheme is based on the method of fundamental solutions. We establish the convergence analysis for Dirichlet energy and LL^\infty-error analysis for mean curvature. Each of the approximate solutions in our scheme is a smooth surface, which is a significant difference from previous studies that required mesh division.Comment: 21 page

    Finite element approximations to surfaces of prescribed variable mean curvature

    No full text
    We give an algorithm for finding finite element approximations to surfaces of prescribed variable mean curvature, which span a given boundary curve. We work in the parametric setting and prove optimal estimates in the H 1 norm. The estimates are verifie

    Finite Element Methods for Geometric Problems

    Get PDF
    In the herewith presented work we numerically treat geometric partial differential equations using finite element methods. Problems of this type appear in many applications from physics, biology and engineering use. We may partition the work in two blocks. The first one, including the chapters two to five, is about the approximation of stationary points of conformally invariant, nonlinear, elliptic energy functionals. Main interest is a compactness result for accumulation points of their discrete counterparts. The corresponding Euler-Lagrange equations are nonlinear, elliptic and of second order. They contain critical nonlinearities that are quadratic in the first derivatives. Thus, accumulation points of solutions to the discrete problem are not solutions of the continuous problem in general. We deduce a weak formulation in a mixed form and chose appropriate spaces for the discretization. First we show existence of discrete solutions and then, by the use of compensated compactness and standard finite element arguments, we establish convergence. Finally we introduce an iterative algorithm for the numerical realization and run different simulations. Hereby we confirm theoretical predictions derived in the stability analysis. The second part is about the derivation of gradient flows for shape functionals and their discretization with parametric finite elements. First, we consider the Willmore energy of a twodimensional surface in the threedimensional ambient space and deduce its first variation. Afterwards we phrase the corresponding gradient flow in a weak form and discuss possible discretizations. During the further progress of the work we modell cell membranes and the effects of surface active agents on the shape of these cells. Numerical simulations with closed surface give promising results and a reason to intensify the research in this field.Finite Elemente Methoden für Geometrische Probleme In der vorliegenden Dissertationsschrift geht es um die numerische Behandlung geometrischer partieller Differentialgleichungen unter Verwendung von Finite Elemente Methoden. Probleme dieser Art treten in einer Vielzahl von physikalischen, technischen und biologischen Anwendungen auf. Thematisch lässt sich die Arbeit in zwei Blöcke aufteilen. In den Kapiteln zwei bis fünf geht es um die Approximation stationärer Punkte konform invarianter, nichtlinearer, elliptischer Energiefunktionale. Das Hauptaugenmerk liegt dabei auf einem Kompaktheitsresultat für Häufungspunkte der diskretisierten Energiefunktionale. Die Euler Lagrange Gleichungen sind elliptisch und von zweiter Ordnung. Sie beinhalten kritische Nichtlinearitäten welche quadratisch von den ersten Ableitungen abhängen. Dies f¨hrt dazu, dass Häufungspunkte von Lösungen der diskretisierten Gleichung nicht zwangsläufig Lösungen der ursprünglichen Gleichung sind. Wir leiten eine schwache Formulierung der Gleichung in gemischter Form her und wählen stabile Finite Elemente Paare für die Diskretisierung. Zunächst zeigen wir, dass Lösungen der diskreten gemischten Formulierung Sattelpunkte eines erweiterten diskreten Energiefunktionals sind und schließen daraus auf die Existenz diskreter Löosungen. Um zu beweisen, dass Häufungspunkte der diskreten Sattelpunkte tatsächlich Lösungen der schwachen Formulierung sind bedienen wir uns einigen Resultaten der kompensierten Kompaktheit sowie bekannten Techniken aus dem Bereich der Finiten Elemente. Schließlich stellen wir einen iterativen Algorithmus für die numerische Realisierung auf und föhren mehrere Simulationen durch. Theoretische Stabilitätsergebnisse für den Algorithmus werden dabei numerisch bestätigt. Im zweiten Teil stehen die Herleitung von Gradientenflüssen von Flächenfunktionalen (shape functional) sowie deren Diskretisierung unter Verwendung von Parametrischen Finite Elemente Methoden im Mittelpunkt. Wir betrachten zunächst die sogenannte Willmore Energie einer zweidimensionalen Fläche im dreidimensionalen Raum und bestimmen deren erste Variation. Anschließend formulieren wir den zugehörigen Gradientenfluss in schwacher Form und diskutieren eine Diskretisierung mittels parametrischer Finite Elemente. Im weiteren Verlauf diskutieren wir die Modellierung von Zellmembranen und die Wirkung von oberflächenaktiven Substanzen (surfactants) auf die Form von Zellen. Numerische Simulationen mit geschlossenen Flächen liefern viel versprechende Resultate und geben Anlass zu weiteren Forschungsarbeiten in diesem Bereich
    corecore