48,228 research outputs found

    Finite dimensional approximation in infinite dimensional mathematical programming

    Full text link
    We consider the problem of approximating an optimal solution to a separable, doubly infinite mathematical program (P) with lower staircase structure by solutions to the programs (P( N )) obtained by truncating after the first N variables and N constraints of (P). Viewing the surplus vector variable associated with the N th constraint as a state, and assuming that all feasible states are eventually reachable from any feasible state, we show that the efficient set of all solutions optimal to all possible feasible surplus states for (P( N )) converges to the set of optimal solutions to (P). A tie-breaking algorithm which selects a nearest-point efficient solution for (P( N )) is shown (for convex programs) to converge to an optimal solution to (P). A stopping rule is provided for discovering a value of N sufficiently large to guarantee any prespecified level of accuracy. The theory is illustrated by an application to production planning.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47924/1/10107_2005_Article_BF01586057.pd

    A method for pricing American options using semi-infinite linear programming

    Full text link
    We introduce a new approach for the numerical pricing of American options. The main idea is to choose a finite number of suitable excessive functions (randomly) and to find the smallest majorant of the gain function in the span of these functions. The resulting problem is a linear semi-infinite programming problem, that can be solved using standard algorithms. This leads to good upper bounds for the original problem. For our algorithms no discretization of space and time and no simulation is necessary. Furthermore it is applicable even for high-dimensional problems. The algorithm provides an approximation of the value not only for one starting point, but for the complete value function on the continuation set, so that the optimal exercise region and e.g. the Greeks can be calculated. We apply the algorithm to (one- and) multidimensional diffusions and to L\'evy processes, and show it to be fast and accurate

    From Infinite to Finite Programs: Explicit Error Bounds with Applications to Approximate Dynamic Programming

    Full text link
    We consider linear programming (LP) problems in infinite dimensional spaces that are in general computationally intractable. Under suitable assumptions, we develop an approximation bridge from the infinite-dimensional LP to tractable finite convex programs in which the performance of the approximation is quantified explicitly. To this end, we adopt the recent developments in two areas of randomized optimization and first order methods, leading to a priori as well as a posterior performance guarantees. We illustrate the generality and implications of our theoretical results in the special case of the long-run average cost and discounted cost optimal control problems for Markov decision processes on Borel spaces. The applicability of the theoretical results is demonstrated through a constrained linear quadratic optimal control problem and a fisheries management problem.Comment: 30 pages, 5 figure

    Approximations of countably-infinite linear programs over bounded measure spaces

    Get PDF
    We study a class of countably-infinite-dimensional linear programs (CILPs) whose feasible sets are bounded subsets of appropriately defined weighted spaces of measures. We show how to approximate the optimal value, optimal points, and minimal points of these CILPs by solving finite-dimensional linear programs. The errors of our approximations converge to zero as the size of the finite-dimensional program approaches that of the original problem and are easy to bound in practice. We discuss the use of our methods in the computation of the stationary distributions, occupation measures, and exit distributions of Markov~chains

    Optimal Stabilization using Lyapunov Measures

    Full text link
    Numerical solutions for the optimal feedback stabilization of discrete time dynamical systems is the focus of this paper. Set-theoretic notion of almost everywhere stability introduced by the Lyapunov measure, weaker than conventional Lyapunov function-based stabilization methods, is used for optimal stabilization. The linear Perron-Frobenius transfer operator is used to pose the optimal stabilization problem as an infinite dimensional linear program. Set-oriented numerical methods are used to obtain the finite dimensional approximation of the linear program. We provide conditions for the existence of stabilizing feedback controls and show the optimal stabilizing feedback control can be obtained as a solution of a finite dimensional linear program. The approach is demonstrated on stabilization of period two orbit in a controlled standard map

    Fast algorithms for solving H∞-norm minimization problems

    Get PDF
    We propose an efficient computational approach to minimize the H ∞-norm of a transfer-function matrix depending affinely on a set of free parameters. The minimization problem, formulated as a semi-infinite convex programming problem, is solved via a relaxation approach over a finite set of frequency values. In this way, a significant speed up is achieved by avoiding the solution of high order LMIs resulting by equivalently formulating the minimization problem as a high dimensional semidefinite programming problem. Numerical results illustrate the superiority of proposed approach over LMIs based techniques in solving zero order H∞-norm approximation problems

    Approximate Dynamic Programming via Sum of Squares Programming

    Full text link
    We describe an approximate dynamic programming method for stochastic control problems on infinite state and input spaces. The optimal value function is approximated by a linear combination of basis functions with coefficients as decision variables. By relaxing the Bellman equation to an inequality, one obtains a linear program in the basis coefficients with an infinite set of constraints. We show that a recently introduced method, which obtains convex quadratic value function approximations, can be extended to higher order polynomial approximations via sum of squares programming techniques. An approximate value function can then be computed offline by solving a semidefinite program, without having to sample the infinite constraint. The policy is evaluated online by solving a polynomial optimization problem, which also turns out to be convex in some cases. We experimentally validate the method on an autonomous helicopter testbed using a 10-dimensional helicopter model.Comment: 7 pages, 5 figures. Submitted to the 2013 European Control Conference, Zurich, Switzerlan
    • …
    corecore