266 research outputs found

    Colliding Interfaces in Old and New Diffuse-interface Approximations of Willmore-flow

    Get PDF
    This paper is concerned with diffuse-interface approximations of the Willmore flow. We first present numerical results of standard diffuse-interface models for colliding one dimensional interfaces. In such a scenario evolutions towards interfaces with corners can occur that do not necessarily describe the adequate sharp-interface dynamics. We therefore propose and investigate alternative diffuse-interface approximations that lead to a different and more regular behavior if interfaces collide. These dynamics are derived from approximate energies that converge to the L1L^1-lower-semicontinuous envelope of the Willmore energy, which is in general not true for the more standard Willmore approximation

    On a new conformal functional for simplicial surfaces

    Full text link
    We introduce a smooth quadratic conformal functional and its weighted version W2=∑eβ2(e)W2,w=∑e(ni+nj)β2(e),W_2=\sum_e \beta^2(e)\quad W_{2,w}=\sum_e (n_i+n_j)\beta^2(e), where β(e)\beta(e) is the extrinsic intersection angle of the circumcircles of the triangles of the mesh sharing the edge e=(ij)e=(ij) and nin_i is the valence of vertex ii. Besides minimizing the squared local conformal discrete Willmore energy WW this functional also minimizes local differences of the angles β\beta. We investigate the minimizers of this functionals for simplicial spheres and simplicial surfaces of nontrivial topology. Several remarkable facts are observed. In particular for most of randomly generated simplicial polyhedra the minimizers of W2W_2 and W2,wW_{2,w} are inscribed polyhedra. We demonstrate also some applications in geometry processing, for example, a conformal deformation of surfaces to the round sphere. A partial theoretical explanation through quadratic optimization theory of some observed phenomena is presented.Comment: 14 pages, 8 figures, to appear in the proceedings of "Curves and Surfaces, 8th International Conference", June 201

    Efficient high order semi-implicit time discretization and local discontinuous Galerkin methods for highly nonlinear PDEs

    Get PDF
    International audienceIn this paper, we develop a high order semi-implicit time discretization method for highly nonlinear PDEs, which consist of the surface diffusion and Willmore flow of graphs, the Cahn-Hilliard equation and the Allen-Cahn/Cahn-Hilliard system. These PDEs are high order in spatial derivatives, which motivates us to develop implicit or semi-implicit time marching methods to relax the severe time step restriction for stability of explicit methods. In addition, these PDEs are also highly nonlinear, fully implicit method will incredibly increase the difficulty of implementation. In particular, we can not well separate the stiff and non-stiff components for these problems, which leads to the traditional implicit-explicit methods nearly meaningless. In this paper, a high order semi-implicit time marching method and the local discontinuous Galerkin spatial method are coupled together to achieve high order accuracy in both space and time, and to enhance the efficiency of the proposed approaches, the resulting linear or nonlinear algebraic systems are solved by multigrid solver. Numerical simulation results in one and two dimensions are presented to illustrate that the combination of the local discontinuous Galerkin method for spatial approximation, semi-implicit temporal integration with the multigrid solver provides a practical and efficient approach when solving this family of problems

    A p-ADAPTIVE LOCAL DISCONTINUOUS GALERKIN LEVEL SET METHOD FOR WILLMORE FLOW

    Get PDF
    International audienceThe level set method is often used to capture interface behavior in two or three dimensions. In this paper, we present a combination of local discontinuous Galerkin (LDG) method and level set method for simulating Willmore flow. The LDG scheme is energy stable and mass conservative, which are good properties comparing with other numerical methods. In addition, to enhance the efficiency of the proposed LDG scheme and level set method, we employ a p-adaptive local discontinuous Galerkin technique, which applies high order polynomial approximations around the zero level set and low order ones away from the zero level set. A major advantage of the level set method is that the topological changes are well defined and easily performed. In particular, given the stiffness of Willmore flow, a high order semi-implicit Runge-Kutta method is employed for time discretization, which allows larger time step. The equations at the implicit time level are linear, we demonstrate an efficient and practical multi-grid solver to solve the equations. Numerical examples are given to illustrate the combination of the LDG scheme and level set method provides an efficient and practical approach when simulating the Willmore flow

    Geometric partial differential equations: Theory, numerics and applications

    Get PDF
    This workshop concentrated on partial differential equations involving stationary and evolving surfaces in which geometric quantities play a major role. Mutual interest in this emerging field stimulated the interaction between analysis, numerical solution, and applications
    • …
    corecore