6,555 research outputs found

    Towards Realizability Checking of Contracts using Theories

    Full text link
    Virtual integration techniques focus on building architectural models of systems that can be analyzed early in the design cycle to try to lower cost, reduce risk, and improve quality of complex embedded systems. Given appropriate architectural descriptions and compositional reasoning rules, these techniques can be used to prove important safety properties about the architecture prior to system construction. Such proofs build from "leaf-level" assume/guarantee component contracts through architectural layers towards top-level safety properties. The proofs are built upon the premise that each leaf-level component contract is realizable; i.e., it is possible to construct a component such that for any input allowed by the contract assumptions, there is some output value that the component can produce that satisfies the contract guarantees. Without engineering support it is all too easy to write leaf-level components that can't be realized. Realizability checking for propositional contracts has been well-studied for many years, both for component synthesis and checking correctness of temporal logic requirements. However, checking realizability for contracts involving infinite theories is still an open problem. In this paper, we describe a new approach for checking realizability of contracts involving theories and demonstrate its usefulness on several examples.Comment: 15 pages, to appear in NASA Formal Methods (NFM) 201

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    On-Chip Transparent Wire Pipelining (invited paper)

    Get PDF
    Wire pipelining has been proposed as a viable mean to break the discrepancy between decreasing gate delays and increasing wire delays in deep-submicron technologies. Far from being a straightforwardly applicable technique, this methodology requires a number of design modifications in order to insert it seamlessly in the current design flow. In this paper we briefly survey the methods presented by other researchers in the field and then we thoroughly analyze the solutions we recently proposed, ranging from system-level wire pipelining to physical design aspects

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    The Synthesis and Analysis of Stochastic Switching Circuits

    Get PDF
    Stochastic switching circuits are relay circuits that consist of stochastic switches called pswitches. The study of stochastic switching circuits has widespread applications in many fields of computer science, neuroscience, and biochemistry. In this paper, we discuss several properties of stochastic switching circuits, including robustness, expressibility, and probability approximation. First, we study the robustness, namely, the effect caused by introducing an error of size \epsilon to each pswitch in a stochastic circuit. We analyze two constructions and prove that simple series-parallel circuits are robust to small error perturbations, while general series-parallel circuits are not. Specifically, the total error introduced by perturbations of size less than \epsilon is bounded by a constant multiple of \epsilon in a simple series-parallel circuit, independent of the size of the circuit. Next, we study the expressibility of stochastic switching circuits: Given an integer q and a pswitch set S=\{\frac{1}{q},\frac{2}{q},...,\frac{q-1}{q}\}, can we synthesize any rational probability with denominator q^n (for arbitrary n) with a simple series-parallel stochastic switching circuit? We generalize previous results and prove that when q is a multiple of 2 or 3, the answer is yes. We also show that when q is a prime number larger than 3, the answer is no. Probability approximation is studied for a general case of an arbitrary pswitch set S=\{s_1,s_2,...,s_{|S|}\}. In this case, we propose an algorithm based on local optimization to approximate any desired probability. The analysis reveals that the approximation error of a switching circuit decreases exponentially with an increasing circuit size.Comment: 2 columns, 15 page

    Sparse Signal Processing Concepts for Efficient 5G System Design

    Full text link
    As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially play a key role in their solution.Comment: 18 pages, 5 figures, accepted for publication in IEEE Acces
    • 

    corecore