478 research outputs found

    Semigroups with if-then-else and halting programs

    Get PDF
    The "if–then–else" construction is one of the most elementary programming commands, and its abstract laws have been widely studied, starting with McCarthy. Possibly, the most obvious extension of this is to include the operation of composition of programs, which gives a semigroup of functions (total, partial, or possibly general binary relations) that can be recombined using if–then–else. We show that this particular extension admits no finite complete axiomatization and instead focus on the case where composition of functions with predicates is also allowed (and we argue there is good reason to take this approach). In the case of total functions — modeling halting programs — we give a complete axiomatization for the theory in terms of a finite system of equations. We obtain a similar result when an operation of equality test and/or fixed point test is included

    Polynomial Invariants for Affine Programs

    Get PDF
    We exhibit an algorithm to compute the strongest polynomial (or algebraic) invariants that hold at each location of a given affine program (i.e., a program having only non-deterministic (as opposed to conditional) branching and all of whose assignments are given by affine expressions). Our main tool is an algebraic result of independent interest: given a finite set of rational square matrices of the same dimension, we show how to compute the Zariski closure of the semigroup that they generate

    Adding modular predicates to first-order fragments

    Full text link
    We investigate the decidability of the definability problem for fragments of first order logic over finite words enriched with modular predicates. Our approach aims toward the most generic statements that we could achieve, which successfully covers the quantifier alternation hierarchy of first order logic and some of its fragments. We obtain that deciding this problem for each level of the alternation hierarchy of both first order logic and its two-variable fragment when equipped with all regular numerical predicates is not harder than deciding it for the corresponding level equipped with only the linear order and the successor. For two-variable fragments we also treat the case of the signature containing only the order and modular predicates.Relying on some recent results, this proves the decidability for each level of the alternation hierarchy of the two-variable first order fragmentwhile in the case of the first order logic the question remains open for levels greater than two.The main ingredients of the proofs are syntactic transformations of first order formulas as well as the algebraic framework of finite categories

    Logic Meets Algebra: the Case of Regular Languages

    Full text link
    The study of finite automata and regular languages is a privileged meeting point of algebra and logic. Since the work of Buchi, regular languages have been classified according to their descriptive complexity, i.e. the type of logical formalism required to define them. The algebraic point of view on automata is an essential complement of this classification: by providing alternative, algebraic characterizations for the classes, it often yields the only opportunity for the design of algorithms that decide expressibility in some logical fragment. We survey the existing results relating the expressibility of regular languages in logical fragments of MSO[S] with algebraic properties of their minimal automata. In particular, we show that many of the best known results in this area share the same underlying mechanics and rely on a very strong relation between logical substitutions and block-products of pseudovarieties of monoid. We also explain the impact of these connections on circuit complexity theory.Comment: 37 page

    From algebra to logic: there and back again -- the story of a hierarchy

    Full text link
    This is an extended survey of the results concerning a hierarchy of languages that is tightly connected with the quantifier alternation hierarchy within the two-variable fragment of first order logic of the linear order.Comment: Developments in Language Theory 2014, Ekaterinburg : Russian Federation (2014

    Parametric Polyhedra with at least kk Lattice Points: Their Semigroup Structure and the k-Frobenius Problem

    Full text link
    Given an integral d×nd \times n matrix AA, the well-studied affine semigroup \mbox{ Sg} (A)=\{ b : Ax=b, \ x \in {\mathbb Z}^n, x \geq 0\} can be stratified by the number of lattice points inside the parametric polyhedra PA(b)={x:Ax=b,x0}P_A(b)=\{x: Ax=b, x\geq0\}. Such families of parametric polyhedra appear in many areas of combinatorics, convex geometry, algebra and number theory. The key themes of this paper are: (1) A structure theory that characterizes precisely the subset \mbox{ Sg}_{\geq k}(A) of all vectors b \in \mbox{ Sg}(A) such that PA(b)ZnP_A(b) \cap {\mathbb Z}^n has at least kk solutions. We demonstrate that this set is finitely generated, it is a union of translated copies of a semigroup which can be computed explicitly via Hilbert bases computations. Related results can be derived for those right-hand-side vectors bb for which PA(b)ZnP_A(b) \cap {\mathbb Z}^n has exactly kk solutions or fewer than kk solutions. (2) A computational complexity theory. We show that, when nn, kk are fixed natural numbers, one can compute in polynomial time an encoding of \mbox{ Sg}_{\geq k}(A) as a multivariate generating function, using a short sum of rational functions. As a consequence, one can identify all right-hand-side vectors of bounded norm that have at least kk solutions. (3) Applications and computation for the kk-Frobenius numbers. Using Generating functions we prove that for fixed n,kn,k the kk-Frobenius number can be computed in polynomial time. This generalizes a well-known result for k=1k=1 by R. Kannan. Using some adaptation of dynamic programming we show some practical computations of kk-Frobenius numbers and their relatives
    corecore